Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = pin–liquid barrier discharge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4759 KB  
Article
Effects of Dielectric Barrier on Water Activation and Phosphorus Compound Digestion in Gas–Liquid Discharges
by Ye Rin Lee, Do Yeob Kim, Jae Young Kim, Da Hye Lee, Gyu Tae Bae, Hyojun Jang, Joo Young Park, Sunghoon Jung, Eun Young Jung, Choon-Sang Park, Hyung-Kun Lee and Heung-Sik Tae
Nanomaterials 2024, 14(1), 40; https://doi.org/10.3390/nano14010040 - 22 Dec 2023
Cited by 1 | Viewed by 1670
Abstract
To generate a stable and effective air–liquid discharge in an open atmosphere, we investigated the effect of the dielectric barrier on the discharge between the pin electrode and liquid surface in an atmospheric-pressure plasma reactor. The atmospheric-pressure plasma reactor used in this study [...] Read more.
To generate a stable and effective air–liquid discharge in an open atmosphere, we investigated the effect of the dielectric barrier on the discharge between the pin electrode and liquid surface in an atmospheric-pressure plasma reactor. The atmospheric-pressure plasma reactor used in this study was based on a pin–plate discharge structure, and a metal wire was used as a pin-type power electrode. A plate-type ground electrode was placed above and below the vessel to compare the pin–liquid discharge and pin–liquid barrier discharge (PLBD). The results indicated that the PLBD configuration utilizing the bottom of the vessel as a dielectric barrier outperformed the pin–liquid setup in terms of the discharge stability and that the concentration of reactive species was different in the two plasma modes. PLBD can be used as a digestion technique for determining the phosphorus concentration in natural water sources. The method for decomposing phosphorus compounds by employing PLBD exhibited excellent decomposition performance, similar to the performance of thermochemical digestion—an established conventional method for phosphorus detection in water. The PLBD structure can replace the conventional chemical-agent-based digestion method for determining the total dissolved phosphorus concentration using the ascorbic acid reduction method. Full article
(This article belongs to the Special Issue Synthesis of Nanostructures in Gas-Discharge Plasma)
Show Figures

Figure 1

12 pages, 3561 KB  
Article
Potential Application of Pin-to-Liquid Dielectric Barrier Discharge Structure in Decomposing Aqueous Phosphorus Compounds for Monitoring Water Quality
by Gyu Tae Bae, Jae Young Kim, Do Yeob Kim, Eun Young Jung, Hyo Jun Jang, Choon-Sang Park, Hyeseung Jang, Dong Ho Lee, Hyung-Kun Lee and Heung-Sik Tae
Materials 2021, 14(24), 7559; https://doi.org/10.3390/ma14247559 - 9 Dec 2021
Cited by 6 | Viewed by 2188
Abstract
Here, we proposed a pin-to-liquid dielectric barrier discharge (DBD) structure that used a water-containing vessel body as a dielectric barrier for the stable and effective treatment of aqueous solutions in an open atmosphere. To obtain an intense pin-to-liquid alternating current discharge using a [...] Read more.
Here, we proposed a pin-to-liquid dielectric barrier discharge (DBD) structure that used a water-containing vessel body as a dielectric barrier for the stable and effective treatment of aqueous solutions in an open atmosphere. To obtain an intense pin-to-liquid alternating current discharge using a dielectric barrier, discharge characteristics, including the area and shape of a ground-plate-type electrode, were investigated after filling the vessel with equivalent amounts of water. Consequently, as the area of the ground electrode increased, the discharge current became stronger, and its timing became faster. Moreover, we proposed that the pin-to-liquid DBD reactor could be used to decompose phosphorus compounds in water in the form of phosphate as a promising pretreatment method for monitoring total phosphorus in water. The decomposition of phosphorus compounds using the pin-to-liquid DBD reactor demonstrated excellent performance—comparable to the thermochemical pretreatment method—which could be a standard pretreatment method for decomposing phosphorus compounds in water. Full article
(This article belongs to the Special Issue Advances in Plasmas)
Show Figures

Figure 1

Back to TopTop