Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = pig cough recognition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4368 KB  
Article
Lightweight Fine-Tuning for Pig Cough Detection
by Xu Zhang, Baoming Li and Xiaoliu Xue
Animals 2026, 16(2), 253; https://doi.org/10.3390/ani16020253 - 14 Jan 2026
Abstract
Respiratory diseases pose a significant threat to intensive pig farming, and cough recognition serves as a key indicator for early intervention. However, its practical application is constrained by the scarcity of labeled samples and the complex acoustic conditions of farm environments. To address [...] Read more.
Respiratory diseases pose a significant threat to intensive pig farming, and cough recognition serves as a key indicator for early intervention. However, its practical application is constrained by the scarcity of labeled samples and the complex acoustic conditions of farm environments. To address these challenges, this study proposes a lightweight pig cough recognition method based on a pre-trained model. By freezing the backbone of a pre-trained audio neural network and fine-tuning only the classifier, our approach achieves effective knowledge transfer and domain adaptation with very limited data. We further enhance the model’s ability to capture temporal–spectral features of coughs through a time–frequency dual-stream module. On a dataset consisting of 107 cough events and 590 environmental noise clips, the proposed method achieved an accuracy of 94.59% and an F1-score of 92.86%, significantly outperforming several traditional machine learning and deep learning baseline models. Ablation studies validated the effectiveness of each component, with the model attaining a mean accuracy of 96.99% in cross-validation and demonstrating good calibration. The results indicate that our framework can achieve high-accuracy and well-generalized pig cough recognition under small-sample conditions. The main contribution of this work lies in proposing a lightweight fine-tuning paradigm for small-sample audio recognition in agricultural settings, offering a reliable technical solution for early warning of respiratory diseases on farms. It also highlights the potential of transfer learning in resource-limited scenarios. Full article
(This article belongs to the Section Pigs)
16 pages, 5278 KB  
Article
Study on a Pig Vocalization Classification Method Based on Multi-Feature Fusion
by Yuting Hou, Qifeng Li, Zuchao Wang, Tonghai Liu, Yuxiang He, Haiyan Li, Zhiyu Ren, Xiaoli Guo, Gan Yang, Yu Liu and Ligen Yu
Sensors 2024, 24(2), 313; https://doi.org/10.3390/s24020313 - 5 Jan 2024
Cited by 9 | Viewed by 3164
Abstract
To improve the classification of pig vocalization using vocal signals and improve recognition accuracy, a pig vocalization classification method based on multi-feature fusion is proposed in this study. With the typical vocalization of pigs in large-scale breeding houses as the research object, short-time [...] Read more.
To improve the classification of pig vocalization using vocal signals and improve recognition accuracy, a pig vocalization classification method based on multi-feature fusion is proposed in this study. With the typical vocalization of pigs in large-scale breeding houses as the research object, short-time energy, frequency centroid, formant frequency and first-order difference, and Mel frequency cepstral coefficient and first-order difference were extracted as the fusion features. These fusion features were improved using principal component analysis. A pig vocalization classification model with a BP neural network optimized based on the genetic algorithm was constructed. The results showed that using the improved features to recognize pig grunting, squealing, and coughing, the average recognition accuracy was 93.2%; the recognition precisions were 87.9%, 98.1%, and 92.7%, respectively, with an average of 92.9%; and the recognition recalls were 92.0%, 99.1%, and 87.4%, respectively, with an average of 92.8%, which indicated that the proposed pig vocalization classification method had good recognition precision and recall, and could provide a reference for pig vocalization information feedback and automatic recognition. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

19 pages, 4756 KB  
Article
Research on Improved DenseNets Pig Cough Sound Recognition Model Based on SENets
by Hang Song, Bin Zhao, Jun Hu, Haonan Sun and Zheng Zhou
Electronics 2022, 11(21), 3562; https://doi.org/10.3390/electronics11213562 - 31 Oct 2022
Cited by 17 | Viewed by 2931
Abstract
In order to real-time monitor the health status of pigs in the process of breeding and to achieve the purpose of early warning of swine respiratory diseases, the SE-DenseNet-121 recognition model was established to recognize pig cough sounds. The 13-dimensional MFCC, ΔMFCC and [...] Read more.
In order to real-time monitor the health status of pigs in the process of breeding and to achieve the purpose of early warning of swine respiratory diseases, the SE-DenseNet-121 recognition model was established to recognize pig cough sounds. The 13-dimensional MFCC, ΔMFCC and Δ2MFCC were transverse spliced to obtain six groups of parameters that could reflect the static, dynamic and mixed characteristics of pig sound signals respectively, and the DenseNet-121 recognition model was used to compare the performance of the six sets of parameters to obtain the optimal set of parameters. The DenseNet-121 recognition model was improved by using the SENets attention module to enhance the recognition model’s ability to extract effective features from the pig sound signals. The results showed that the optimal set of parameters was the 26-dimensional MFCC + ΔMFCC, and the rate of recognition accuracy, recall, precision and F1 score of the SE-DenseNet-121 recognition model for pig cough sounds were 93.8%, 98.6%, 97% and 97.8%, respectively. The above results can be used to develop a pig cough sound recognition system for early warning of pig respiratory diseases. Full article
(This article belongs to the Section Bioelectronics)
Show Figures

Figure 1

Back to TopTop