Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = phthalamic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4804 KiB  
Article
Bioactivity-Guided Synthesis: In Silico and In Vitro Studies of β-Glucosidase Inhibitors to Cope with Hepatic Cytotoxicity
by Aneela Khushal, Umar Farooq, Sara Khan, Azhar Rasul, Tanveer A. Wani, Seema Zargar, Sohail Anjum Shahzad, Syed Majid Bukhari and Nazeer Ahmad Khan
Molecules 2023, 28(18), 6548; https://doi.org/10.3390/molecules28186548 - 9 Sep 2023
Cited by 2 | Viewed by 1986
Abstract
The major cause of hyperglycemia can generally be attributed to β-glucosidase as per its involvement in non-alcoholic fatty liver disease. This clinical condition leads to liver carcinoma (HepG2 cancer). The phthalimides and phthalamic acid classes possess inhibitory potential against glucosidase, forming the basis [...] Read more.
The major cause of hyperglycemia can generally be attributed to β-glucosidase as per its involvement in non-alcoholic fatty liver disease. This clinical condition leads to liver carcinoma (HepG2 cancer). The phthalimides and phthalamic acid classes possess inhibitory potential against glucosidase, forming the basis for designing new phthalimide and phthalamic acid analogs to test their ability as potent inhibitors of β-glucosidase. The study also covers in silico (molecular docking and MD simulations) and in vitro (β-glucosidase and HepG2 cancer cell line assays) analyses. The phthalimide and phthalamic acid derivatives were synthesized, followed by spectroscopic characterization. The mechanistic complexities associated with β-glucosidase inhibition were identified via the docking of the synthesized compounds inside the active site of the protein, and the results were analyzed in terms of the best binding energy and appropriate docking pose. The top-ranked compounds were subjected to extensive MD simulation studies to understand the mode of interaction of the synthesized compounds and binding energies, as well as the contribution of individual residues towards binding affinities. Lower RMSD/RMSF values were observed for 2c and 3c, respectively, in the active site, confirming more stabilized, ligand-bound complexes when compared to the free state. An anisotropic network model was used to unravel the role of loop fluctuation in the context of ligand binding and the dynamics that are distinct to the bound and free states, supported by a 3D surface plot. An in vitro study revealed that 1c (IC50 = 1.26 µM) is far better than standard acarbose (2.15 µM), confirming the potential of this compound against the target protein. Given the appreciable potential of the candidate compounds against β-glucosidase, the synthesized compounds were further tested for their cytotoxic activity against hepatic carcinoma on HepG2 cancer cell lines. The cytotoxicity profile of the synthesized compounds was performed against HepG2 cancer cell lines. The resultant IC50 value (0.048 µM) for 3c is better than the standard (thalidomide: IC50 0.053 µM). The results promise the hypothesis that the synthesized compounds might become potential drug candidates, given the fact that the β-glucosidase inhibition of 1c is 40% better than the standard, whereas compound 3c holds more anti-tumor activity (greater than 9%) against the HepG2 cell line than the known drug. Full article
Show Figures

Graphical abstract

18 pages, 15743 KiB  
Article
Expression of CsSCL1 and Rooting Response in Chestnut Leaves Are Dependent on the Auxin Polar Transport and the Ontogenetic Origin of the Tissues
by Elena Varas, Silvia Valladares, Jesús Vielba, Nieves Vidal and Conchi Sánchez
Plants 2023, 12(14), 2657; https://doi.org/10.3390/plants12142657 - 16 Jul 2023
Cited by 1 | Viewed by 1456
Abstract
The mechanisms underlying the de novo regeneration of adventitious roots are still poorly understood, particularly in trees. We developed a system for studying adventitious rooting (AR) at physiological and molecular levels using leaves excised from chestnut microshoots of the same genotype but with [...] Read more.
The mechanisms underlying the de novo regeneration of adventitious roots are still poorly understood, particularly in trees. We developed a system for studying adventitious rooting (AR) at physiological and molecular levels using leaves excised from chestnut microshoots of the same genotype but with two distinct ontogenetic origins that differ in rooting competence. Leaves were treated with auxin and N-1-naphthyl-phthalamic acid (NPA), an inhibitor of auxin polar transport (PAT). The physiological effects were investigated by recording rooting rates and the number and quality of the roots. Molecular responses were examined by localizing and monitoring the changes in the expression of CsSCL1, an auxin-inducible gene in juvenile and mature shoots during AR. The rooting response of leaves was ontogenetic-stage dependent and similar to that of the donor microshoots. Initiation of root primordia and root development were inhibited by application of NPA, although its effect depended on the timing of application. CsSCL1 was upregulated by auxin only in rooting-competent leaves during the novo root organogenesis, and the expression was reduced by NPA. The inhibitory effect on gene expression was detected during the reprograming of rooting competent cells towards root initials in response to auxin, indicating that PAT-mediated upregulation of CsSCL1 is required in the initial steps of AR in chestnut leaves. The localized expression of CsSCL1 in the quiescent center (QC) also suggests a role for this gene in the maintenance of meristematic competence and root radial patterning. Full article
(This article belongs to the Special Issue Application of Biotechnology to Woody Propagation)
Show Figures

Graphical abstract

Back to TopTop