Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = photon momentum transformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1992 KiB  
Article
Optimized Catenary Metasurface for Detecting Spin and Orbital Angular Momentum via Momentum Transformation
by Guoquan Fu, Siran Chen, Qiong He, Lingxing Xiong, Yifeng Wen, Fei Zhang, Yuran Lu, Yinghui Guo, Mingbo Pu and Xiangang Luo
Appl. Sci. 2023, 13(5), 3237; https://doi.org/10.3390/app13053237 - 3 Mar 2023
Cited by 2 | Viewed by 2258
Abstract
Theoretically, the topological charge l in the vortex can be any integer or fraction, thus the vortex carrying different topological charges can form an infinitely orthogonal orbital angular momentum state space, which can provide new dimensional resources for optical communication. However, high-capacity optical [...] Read more.
Theoretically, the topological charge l in the vortex can be any integer or fraction, thus the vortex carrying different topological charges can form an infinitely orthogonal orbital angular momentum state space, which can provide new dimensional resources for optical communication. However, high-capacity optical communication requires low delay, thus real-time detection of the OAM is significant for communication. Metasurfaces have the characteristics of low loss, ultra-thin, easy integration, and flexible phase controls, which provide a meaningful way to realize integrated OAM generation and detection. Here, an optimized streamlined metasurface (OSM) is presented, which can detect high-order vortex beams in a single, simple, and rapid manner by photon momentum transformation (PMT). Since different vortices are converted into focusing modes with distinct azimuthal coordinates on a transverse plane through PMT, a single measurement can determine OAMs in an ample mode space. In addition, the OSM can detect more and higher order OAMs compared with a discrete metasurface (DM) at the same size, due to its better wavefront sampling capabilities. With the merits of an ultra-compact device size, simple optical structure, and outstanding vortex recognition ability, our approach may underpin the development of integrated optics and quantum systems. Full article
(This article belongs to the Special Issue Advances in Orbital Angular Momentum (OAM))
Show Figures

Figure 1

13 pages, 2577 KiB  
Article
Description of Dressed-Photon Dynamics and Extraction Process
by Suguru Sangu and Hayato Saigo
Symmetry 2021, 13(10), 1768; https://doi.org/10.3390/sym13101768 - 23 Sep 2021
Viewed by 1536
Abstract
Several interesting physical phenomena and industrial applications explained by the dressed photon have been reported in recent years. These require a novel concept in an off-shell science that deviates from the conventional optics, satisfying energy and momentum conservation laws. In this paper, starting [...] Read more.
Several interesting physical phenomena and industrial applications explained by the dressed photon have been reported in recent years. These require a novel concept in an off-shell science that deviates from the conventional optics, satisfying energy and momentum conservation laws. In this paper, starting from an original model that captures dressed-photon characteristics phenomenologically, the dynamics of the dressed photon in a nanomatter system and the mechanism for extracting internal degrees of freedom of the dressed photon to an external space have been examined by theoretical and numerical approaches. Our proposal is that basis states of the dressed photon can be transformed to the form that reflects the spatial distribution of the dressed-photon steady state in the system, and some of basis states with predetermined spatial distribution can relate to the dissipation components in the external space by means of the renormalization technique. From the results of numerical simulation, it is found that quasi-static states are regarded as the photon with light mass or massless, and the extraction of active states strongly affects the spatial distribution in a new steady state. The concept for extracting dressed-photon energy to an external space will contribute to a detailed understanding of dressed-photon physics and future industrial applications. Full article
(This article belongs to the Special Issue Quantum Fields and Off-Shell Sciences)
Show Figures

Figure 1

11 pages, 10692 KiB  
Article
Nonlinear Metasurface for Structured Light with Tunable Orbital Angular Momentum
by Yun Xu, Jingbo Sun, Jesse Frantz, Mikhail I. Shalaev, Wiktor Walasik, Apra Pandey, Jason D. Myers, Robel Y. Bekele, Alexander Tsukernik, Jasbinder S. Sanghera and Natalia M. Litchinitser
Appl. Sci. 2019, 9(5), 958; https://doi.org/10.3390/app9050958 - 6 Mar 2019
Cited by 12 | Viewed by 4589
Abstract
Orbital angular momentum (OAM) beams may create a new paradigm for the future classical and quantum communication systems. A majority of existing OAM beam converters are bulky, slow, and cannot withstand high powers. Here, we design and experimentally demonstrate an ultra-fast, compact chalcogenide-based [...] Read more.
Orbital angular momentum (OAM) beams may create a new paradigm for the future classical and quantum communication systems. A majority of existing OAM beam converters are bulky, slow, and cannot withstand high powers. Here, we design and experimentally demonstrate an ultra-fast, compact chalcogenide-based all-dielectric metasurface beam converter which has the ability to transform a Hermite–Gaussian (HG) beam into a beam carrying an OAM at near infrared wavelength. Depending on the input beam intensity, the topological charge carried by the output OAM beam can be switched between positive and negative. The device provides high transmission efficiency and is fabricated by a standard electron beam lithography. Arsenic trisulfide (As 2 S 3 ) chalcogenide glass (ChG) offers ultra-fast and large third-order nonlinearity as well as a low two-photon absorption coefficient in the near infrared spectral range. Full article
Show Figures

Figure 1

13 pages, 685 KiB  
Concept Paper
Thixotropic Phenomena in Water: Quantitative Indicators of Casimir-Magnetic Transformations from Vacuum Oscillations (Virtual Particles)
by Michael A. Persinger
Entropy 2015, 17(9), 6200-6212; https://doi.org/10.3390/e17096200 - 7 Sep 2015
Cited by 5 | Viewed by 4950
Abstract
The ~1.5 × 10−20 J which is considered a universal quantity and is associated with the movement of protons in water also relates to the ratio of the magnetic moment of a proton divided by its unit charge, multiplied by viscosity and [...] Read more.
The ~1.5 × 10−20 J which is considered a universal quantity and is associated with the movement of protons in water also relates to the ratio of the magnetic moment of a proton divided by its unit charge, multiplied by viscosity and applied over the O-H distance. There is quantitative evidence that thixotropy, the “spontaneous” increased viscosity in water when undisturbed, originates from the transformation of virtual particles or vacuum oscillations to real states through conversion of Casimir-magnetic energies that involve the frequency of the neutral hydrogen line and the upper bound threshold value for intergalactic magnetic fields. The results indicate that ½ of a single electron orbit is real (particle) and the other ½ is virtual (wave). The matter equivalent per s for virtual-to-real states for electrons in 1 mL of water with a neutral pH is consistent with the numbers of protons (H+) and the measured range of molecules in the coherent domains for both width and duration of growth and is similar to widths of intergalactic dust grains from which planets and stars may condense. The de Broglie momentum for the lower boundary of the width of coherent domains multiplied by the fine structure velocity of an electron is concurrent with the quantum when one proton is being removed from another and when the upper boundary of the rest mass of a photon is transformed by the product of velocities for putative “entanglement” and light. Theoretical and experimental results indicate that components of thixotropy, such as specific domains of intercalated water molecules, could display excess correlations over very large distances. Because the energies of the universal quantity and water converge it may be a special conduit for discrete transformations from virtual to real states. Full article
Back to TopTop