Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = photoactive Kelvin probe force microscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3266 KiB  
Article
Determination of the Electrical Parameters of Iodine-Doped Polymer Solar Cells at the Macro- and Nanoscale for Indoor Applications
by Marcin Palewicz, Andrzej Sikora, Tomasz Piasecki, Ewelina Gacka, Paweł Nitschke, Paweł Gnida, Bożena Jarząbek and Teodor Gotszalk
Energies 2023, 16(12), 4741; https://doi.org/10.3390/en16124741 - 15 Jun 2023
Cited by 2 | Viewed by 1734
Abstract
In this work, macro- and nanodiagnostic procedures for working, third-generation photovoltaic devices based on a modified polymer:fullerene (P3HT:PCBM) absorber were conducted using atomic force microscopy (AFM) and impedance spectroscopy (IS) equipment. All experiments were performed both in the dark and under irradiation with [...] Read more.
In this work, macro- and nanodiagnostic procedures for working, third-generation photovoltaic devices based on a modified polymer:fullerene (P3HT:PCBM) absorber were conducted using atomic force microscopy (AFM) and impedance spectroscopy (IS) equipment. All experiments were performed both in the dark and under irradiation with a specific light wavelength. Photoactive Kelvin probe force microscopy (p-KPFM) and impedance spectroscopy (p-IS) experiments were conducted on half- and whole-solar cell devices. Based on the p-KPFM measurements, the surface potential (SP) and surface photovoltage (SPV) on top of the active layer at the micro/nanoscale were estimated for various light wavelengths (red, green, blue, and white). For light in the red spectrum range, which was associated with an optical absorption edge and acceptor states that occurred in the band gap of the P3HT material after doping the donor polymer with iodine, the SPV was measured at levels of 183 mV, 199 mV, and 187 mV for the samples with 0%, 5% and 10% iodine doping, respectively. In addition, a macroscale investigation enabling the determination of the electrical parameters of the studied organic solar cells (OSCs) was carried out using p-IS. Based on the data obtained during p-IS experiments, it was possible to propose a series electrical equivalent circuit to define and describe the charge transfer phenomenon in the OSCs. Estimations of data obtained from the fitting of the experimental results of p-IS under white light allowed us to evaluate the average diffusion time of electric charges at 8.15 µs, 16.66 µs, and 24.15 µs as a function of organic layer thickness for the device without doping and with 5% and 10% iodine doping. In this study, we demonstrated that correlating information obtained at the macro- and nanoscale enabled a better understanding of the electrical charge distribution of OSCs for indoor applications. Full article
(This article belongs to the Special Issue Research on Solar Cell Materials)
Show Figures

Figure 1

14 pages, 2430 KiB  
Article
Characterization and Electronic Properties of Heptazine Layers: Towards Promising Interfacial Materials for Organic Optoelectronics
by Issoufou Ibrahim Zamkoye, Houda El Gbouri, Remi Antony, Bernard Ratier, Johann Bouclé, Laurent Galmiche, Thierry Trigaud and Pierre Audebert
Materials 2020, 13(17), 3826; https://doi.org/10.3390/ma13173826 - 29 Aug 2020
Cited by 6 | Viewed by 3108
Abstract
For the first time, an original compound belonging to the heptazine family has been deposited in the form of thin layers, both by thermal evaporation under vacuum and spin-coating techniques. In both cases, smooth and homogeneous layers have been obtained, and their properties [...] Read more.
For the first time, an original compound belonging to the heptazine family has been deposited in the form of thin layers, both by thermal evaporation under vacuum and spin-coating techniques. In both cases, smooth and homogeneous layers have been obtained, and their properties evaluated for eventual applications in the field of organic electronics. The layers have been fully characterized by several concordant techniques, namely UV-visible spectroscopy, steady-state and transient fluorescence in the solid-state, as well as topographic and conductive atomic force microscopy (AFM) used in Kelvin probe force mode (KPFM). Consequently, the afferent energy levels, including Fermi level, have been determined, and show that these new heptazines are promising materials for tailoring the electronic properties of interfaces associated with printed electronic devices. A test experiment showing an improved electron transfer rate from a tris-(8-hydroxyquinoline) aluminum (Alq3) photo-active layer in presence of a heptazine interlayer is finally presented. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

Back to TopTop