Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = photo-Kolbe reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1714 KiB  
Article
Self-Photopolymerizable Hydrogel–Ceramic Composites with Scavenger Properties
by Maria Canillas, Gabriel Goetten de Lima, Marcelo J. C. de Sá, Michael J. D. Nugent, Miguel A. Rodríguez and Declan M. Devine
Polymers 2022, 14(6), 1261; https://doi.org/10.3390/polym14061261 - 21 Mar 2022
Viewed by 2626
Abstract
The photocatalytic behaviours of semiconductive ceramic nanoparticles such as TiO2, ZnO, Fe2O3, and Fe3O4, have been extensively studied in photocatalysis and photopolymerization, due to their ability to produce radical species under ultraviolet–visible light, [...] Read more.
The photocatalytic behaviours of semiconductive ceramic nanoparticles such as TiO2, ZnO, Fe2O3, and Fe3O4, have been extensively studied in photocatalysis and photopolymerization, due to their ability to produce radical species under ultraviolet–visible light, and even in dark conditions. In addition, in the form of microparticles, TiO2 and its Magnéli phases are capable of neutralizing radical species, and a heterogeneous catalytic process has been suggested to explain this property, as it is well known as scavenging activity. Thus, in this study, we demonstrate that these ceramic powders, in the form of microparticles, could be used as photoinitiators in UV polymerization in order to synthesize a hydrogel matrix. Them, embedded ceramic powders could be able to neutralize radical species of physiological media once implanted. The hydrogel matrix would regulate the exchange of free radicals in any media, while the ceramic particles would neutralize the reactive species. Therefore, in this work, the scavenger activities of TiO2, ZnO, Fe2O3, and Fe3O4 microparticles, along with their photoinitiation yield, were evaluated. After photopolymerization, the gel fraction and swelling behaviour were evaluated for each hydrogel produced with different ceramic initiators. Gel fractions were higher than 60%, exhibiting variation in their scavenging activity. Therefore, we demonstrate that ceramic photoinitiators of TiO2, ZnO, Fe2O3, and Fe3O4 can be used to fabricate implantable devices with scavenger properties in order to neutralize radical species involved in inflammatory processes and degenerative diseases. Full article
(This article belongs to the Special Issue Recent Advances in UV Polymerization—New Polymeric Materials)
Show Figures

Figure 1

15 pages, 2546 KiB  
Article
Boosting the H2 Production Efficiency via Photocatalytic Organic Reforming: The Role of Additional Hole Scavenging System
by Yamen AlSalka, Osama Al-Madanat, Amer Hakki and Detlef W. Bahnemann
Catalysts 2021, 11(12), 1423; https://doi.org/10.3390/catal11121423 - 23 Nov 2021
Cited by 22 | Viewed by 3134
Abstract
The simultaneous photocatalytic H2 evolution with environmental remediation over semiconducting metal oxides is a fascinating process for sustainable fuel production. However, most of the previously reported photocatalytic reforming showed nonstoichiometric amounts of the evolved H2 when organic substrates were used. To [...] Read more.
The simultaneous photocatalytic H2 evolution with environmental remediation over semiconducting metal oxides is a fascinating process for sustainable fuel production. However, most of the previously reported photocatalytic reforming showed nonstoichiometric amounts of the evolved H2 when organic substrates were used. To explain the reasons for this phenomenon, a careful analysis of the products and intermediates in gas and aqueous phases upon the photocatalytic hydrogen evolution from oxalic acid using Pt/TiO2 was performed. A quadrupole mass spectrometer (QMS) was used for the continuous flow monitoring of the evolved gases, while high performance ion chromatography (HPIC), isotopic labeling, and electron paramagnetic resonance (EPR) were employed to understand the reactions in the solution. The entire consumption of oxalic acid led to a ~30% lower H2 amount than theoretically expected. Due to the contribution of the photo-Kolbe reaction mechanism, a tiny amount of formic acid was produced then disappeared shortly after the complete consumption of oxalic acid. Nevertheless, a much lower concentration of formic acid was generated compared to the nonstoichiometric difference between the formed H2 and the consumed oxalic acid. Isotopic labeling measurements showed that the evolved H2, HD, and/or D2 matched those of the solvent; however, using D2O decreased the reaction rate. Interestingly, the presence of KI as an additional hole scavenger with oxalic acid had a considerable impact on the reaction mechanism, and thus the hydrogen yield, as indicated by the QMS and the EPR measurements. The added KI promoted H2 evolution to reach the theoretically predictable amount and inhibited the formation of intermediates without affecting the oxalic acid degradation rate. The proposed mechanism, by which KI boosts the photocatalytic performance, is of great importance in enhancing the overall energy efficiency for hydrogen production via photocatalytic organic reforming. Full article
Show Figures

Graphical abstract

Back to TopTop