Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = phage display-derived Cu(II)-Xxx-His complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2350 KB  
Article
Ultra-Selective and Sensitive Fluorescent Chemosensor Based on Phage Display-Derived Peptide with an N-Terminal Cu(II)-Binding Motif
by Marta Sosnowska, Tomasz Łęga, Dawid Nidzworski, Marcin Olszewski and Beata Gromadzka
Biosensors 2024, 14(11), 555; https://doi.org/10.3390/bios14110555 - 14 Nov 2024
Cited by 1 | Viewed by 1437
Abstract
Copper, along with gold, was among the first metals that humans employed. Thus, the copper pollution of the world’s water resources is escalating, posing a significant threat to human health and aquatic ecosystems. It is crucial to develop detection technology that is both [...] Read more.
Copper, along with gold, was among the first metals that humans employed. Thus, the copper pollution of the world’s water resources is escalating, posing a significant threat to human health and aquatic ecosystems. It is crucial to develop detection technology that is both low-cost and feasible, as well as ultra-selective and sensitive. This study explored the use of the NH2-Xxx-His motif-derived peptide from phage display technology for ultra-selective Cu2+ detection. Various Cu-binding M13 phage clones were isolated, and their affinity and cross-reactivity for different metal ions were determined. A detailed analysis of the amino acid sequence of the unique Cu-binding peptides was employed. For the development of an optical chemosensor, a peptide with an NH2-Xxx-His motif was selected. The dansyl group was incorporated during solid-phase peptide synthesis, and fluorescence detection assays were employed. The efficacy of the Cu2+-binding peptide was verified through spectroscopic measurements. In summary, we developed a highly selective and sensitive fluorescent chemosensor for Cu2+ detection based on a peptide sequence from a phage display library that carries the N-terminal Xxx-His motif. Full article
(This article belongs to the Special Issue Application of Biosensors in Environmental Monitoring)
Show Figures

Figure 1

Back to TopTop