Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = pear (Pyrus pyrifolia Nakai. Whangkeumbae)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4341 KB  
Article
Expression and Regulation of PpEIN3b during Fruit Ripening and Senescence via Integrating SA, Glucose, and ACC Signaling in Pear (Pyrus pyrifolia Nakai. Whangkeumbae)
by Haiyan Shi, Yuxing Zhang and Liang Chen
Genes 2019, 10(6), 476; https://doi.org/10.3390/genes10060476 - 21 Jun 2019
Cited by 17 | Viewed by 4591
Abstract
The economic value of fruit is reduced by having a short shelf life. Whangkeumbae is a type of sand pear (Pyrus pyrifolia) considered a climacteric fruit. The pear is famous for its smooth surface and good flavor. However, its shelf life [...] Read more.
The economic value of fruit is reduced by having a short shelf life. Whangkeumbae is a type of sand pear (Pyrus pyrifolia) considered a climacteric fruit. The pear is famous for its smooth surface and good flavor. However, its shelf life is very short because of senescence and disease after harvest and a burst of ethylene (ET) production prompting the onset of fruit ripening. In plants, ETHYLENE INSENSITIVE3 (EIN3) and EIN3like (EIL), located in the nucleus, are important components of the ET signaling pathway and act as transcription factors. EIN3s and EILs belong to a small family involved in regulating the expression of ethylene response factor gene (ERF), whose encoding protein is the final component in the ET signaling pathway. The mutation of these components will cause defects in the ethylene pathway. In this study, one gene encoding an EIN3 was cloned and identified from Whangkeumbae and designated PpEIN3b. The deduced PpEIN3b contained a conserved EIN3 domain, a bipartite nuclear localization signal profile (NLS_BP), and an N-6 adenine-specific DNA methylase signature (N6_MTASE). PpEIN3b belongs to the EIN3 super-family by phylogenetic analysis. Quantitative RT-PCR (qRT-PCR) analysis revealed that PpEIN3b was preferentially expressed in fruit. Additionally, its expression was developmentally regulated during fruit ripening and senescence. Furthermore, PpEIN3b transcripts were obviously repressed by salicylic acid (SA) and glucose treatment in pear fruit and in diseased fruit, while it was significantly induced by 1-aminocyclopropane-1-carboxylic acid (ACC) treatment. Taken together, our results reveal the expression and regulation profiles of PpEIN3b and suggest that PpEIN3b might integrate SA, glucose, and ACC signaling to regulate fruit ripening and senescence in pear, which would provide a candidate gene for this regulation to obtain fruit with a long shelf life and improved economic value. Full article
(This article belongs to the Special Issue Hormonal Control of Gene Expression in Plants)
Show Figures

Figure 1

Back to TopTop