Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = partially occluded image alignment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1604 KiB  
Article
Automatic Classification of Magnetic Resonance Histology of Peripheral Arterial Chronic Total Occlusions Using a Variational Autoencoder: A Feasibility Study
by Judit Csore, Christof Karmonik, Kayla Wilhoit, Lily Buckner and Trisha L. Roy
Diagnostics 2023, 13(11), 1925; https://doi.org/10.3390/diagnostics13111925 - 31 May 2023
Cited by 5 | Viewed by 1857
Abstract
The novel approach of our study consists in adapting and in evaluating a custom-made variational autoencoder (VAE) using two-dimensional (2D) convolutional neural networks (CNNs) on magnetic resonance imaging (MRI) images for differentiate soft vs. hard plaque components in peripheral arterial disease (PAD). Five [...] Read more.
The novel approach of our study consists in adapting and in evaluating a custom-made variational autoencoder (VAE) using two-dimensional (2D) convolutional neural networks (CNNs) on magnetic resonance imaging (MRI) images for differentiate soft vs. hard plaque components in peripheral arterial disease (PAD). Five amputated lower extremities were imaged at a clinical ultra-high field 7 Tesla MRI. Ultrashort echo time (UTE), T1-weighted (T1w) and T2-weighted (T2w) datasets were acquired. Multiplanar reconstruction (MPR) images were obtained from one lesion per limb. Images were aligned to each other and pseudo-color red-green-blue images were created. Four areas in latent space were defined corresponding to the sorted images reconstructed by the VAE. Images were classified from their position in latent space and scored using tissue score (TS) as following: (1) lumen patent, TS:0; (2) partially patent, TS:1; (3) mostly occluded with soft tissue, TS:3; (4) mostly occluded with hard tissue, TS:5. Average and relative percentage of TS was calculated per lesion defined as the sum of the tissue score for each image divided by the total number of images. In total, 2390 MPR reconstructed images were included in the analysis. Relative percentage of average tissue score varied from only patent (lesion #1) to presence of all four classes. Lesions #2, #3 and #5 were classified to contain tissues except mostly occluded with hard tissue while lesion #4 contained all (ranges (I): 0.2–100%, (II): 46.3–75.9%, (III): 18–33.5%, (IV): 20%). Training the VAE was successful as images with soft/hard tissues in PAD lesions were satisfactory separated in latent space. Using VAE may assist in rapid classification of MRI histology images acquired in a clinical setup for facilitating endovascular procedures. Full article
(This article belongs to the Special Issue Artificial Intelligence in Radiology 2.0)
Show Figures

Figure 1

15 pages, 11518 KiB  
Article
Groupwise Image Alignment via Self Quotient Images
by Nefeli Lamprinou, Nikolaos Nikolikos and Emmanouil Z. Psarakis
Sensors 2020, 20(8), 2325; https://doi.org/10.3390/s20082325 - 19 Apr 2020
Cited by 1 | Viewed by 2639
Abstract
Compared with pairwise registration, the groupwise one is capable of handling a large-scale population of images simultaneously in an unbiased way. In this work we improve upon the state-of-the-art pixel-level, Least-Squares (LS)-based groupwise image registration methods. Specifically, the registration technique is properly adapted [...] Read more.
Compared with pairwise registration, the groupwise one is capable of handling a large-scale population of images simultaneously in an unbiased way. In this work we improve upon the state-of-the-art pixel-level, Least-Squares (LS)-based groupwise image registration methods. Specifically, the registration technique is properly adapted by the use of Self Quotient Images (SQI) in order to become capable for solving the groupwise registration of photometrically distorted, partially occluded as well as unimodal and multimodal images. Moreover, the proposed groupwise technique is linear to the cardinality of the image set and thus it can be used for the successful solution of the problem on large image sets with low complexity. From the application of the proposed technique on a series of experiments for the groupwise registration of photometrically and geometrically distorted, partially occluded faces as well as unimodal and multimodal magnetic resonance image sets and its comparison with the Lucas–Kanade Entropy (LKE) algorithm, the obtained results look very promising, in terms of alignment quality, using as figures of merit the mean Peak Signal to Noise Ratio ( m P S N R ) and mean Structural Similarity ( m S S I M ), and computational cost. Full article
Show Figures

Figure 1

Back to TopTop