Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = pancreatic subregions segmentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1018 KiB  
Article
Segmentation of Pancreatic Subregions in Computed Tomography Images
by Sehrish Javed, Touseef Ahmad Qureshi, Zengtian Deng, Ashley Wachsman, Yaniv Raphael, Srinivas Gaddam, Yibin Xie, Stephen Jacob Pandol and Debiao Li
J. Imaging 2022, 8(7), 195; https://doi.org/10.3390/jimaging8070195 - 12 Jul 2022
Cited by 11 | Viewed by 2928
Abstract
The accurate segmentation of pancreatic subregions (head, body, and tail) in CT images provides an opportunity to examine the local morphological and textural changes in the pancreas. Quantifying such changes aids in understanding the spatial heterogeneity of the pancreas and assists in the [...] Read more.
The accurate segmentation of pancreatic subregions (head, body, and tail) in CT images provides an opportunity to examine the local morphological and textural changes in the pancreas. Quantifying such changes aids in understanding the spatial heterogeneity of the pancreas and assists in the diagnosis and treatment planning of pancreatic cancer. Manual outlining of pancreatic subregions is tedious, time-consuming, and prone to subjective inconsistency. This paper presents a multistage anatomy-guided framework for accurate and automatic 3D segmentation of pancreatic subregions in CT images. Using the delineated pancreas, two soft-label maps were estimated for subregional segmentation—one by training a fully supervised naïve Bayes model that considers the length and volumetric proportions of each subregional structure based on their anatomical arrangement, and the other by using the conventional deep learning U-Net architecture for 3D segmentation. The U-Net model then estimates the joint probability of the two maps and performs optimal segmentation of subregions. Model performance was assessed using three datasets of contrast-enhanced abdominal CT scans: one public NIH dataset of the healthy pancreas, and two datasets D1 and D2 (one for each of pre-cancerous and cancerous pancreas). The model demonstrated excellent performance during the multifold cross-validation using the NIH dataset, and external validation using D1 and D2. To the best of our knowledge, this is the first automated model for the segmentation of pancreatic subregions in CT images. A dataset consisting of reference anatomical labels for subregions in all images of the NIH dataset is also established. Full article
(This article belongs to the Special Issue Intelligent Strategies for Medical Image Analysis)
Show Figures

Figure 1

Back to TopTop