Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = pH-sensitive chitosan nanofiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5290 KiB  
Article
Poisonous Caterpillar-Inspired Chitosan Nanofiber Enabling Dual Photothermal and Photodynamic Tumor Ablation
by Hyeong Sup Yu, Hongsuk Park, Thang Hong Tran, Sung Yeon Hwang, Kun Na, Eun Seong Lee, Kyung Taek Oh, Dongyeop X. Oh and Jeyoung Park
Pharmaceutics 2019, 11(6), 258; https://doi.org/10.3390/pharmaceutics11060258 - 2 Jun 2019
Cited by 21 | Viewed by 3841
Abstract
As caterpillars detect the presence of predators and secrete poison, herein, we show an innovative and highly effective cancer therapeutic system using biocompatible chitosan nanofiber (CNf) installed with a pH-responsive motif that senses tumor extracellular pH, pHe, prior to delivering dual-modal [...] Read more.
As caterpillars detect the presence of predators and secrete poison, herein, we show an innovative and highly effective cancer therapeutic system using biocompatible chitosan nanofiber (CNf) installed with a pH-responsive motif that senses tumor extracellular pH, pHe, prior to delivering dual-modal light-activatable materials for tumor reduction. The filamentous nanostructure of CNf is dynamic during cell interaction and durable in blood circulation. Due to its amine group, CNf uptakes a large amount of photothermal gold nanoparticles (AuNPs, >25 wt %) and photodynamic chlorin e6 (Ce6, >5 wt %). As the innovative CNf approaches tumors, cationic CNf effectively discharges AuNPs connected to the pH-responsive motif via electrostatic repulsion and selectively binds to tumor cells that are generally anionic, via the electrostatic attraction accompanied by CNf. We demonstrated via these actions that the endocytosed Ce6 (on CNf) and AuNPs (free from CNf) significantly elicited tumor cell death under light irradiation. As a result, the synergistic interplay of thermogenesis and photodynamic action was observed to switch on at the pHe, resulting in a striking reduction in tumor formation and growth rate upon light exposure. Full article
Show Figures

Graphical abstract

12 pages, 7397 KiB  
Article
Multifunctional Surface Modification of Mulberry Silk Fabric via PNIPAAm/Chitosan/PEO Nanofibers Coating and Cross-Linking Technology
by Jia Li, Boxiang Wang, Jie Lin, Dehong Cheng and Yanhua Lu
Coatings 2018, 8(2), 68; https://doi.org/10.3390/coatings8020068 - 9 Feb 2018
Cited by 10 | Viewed by 6830
Abstract
Multifunctional mulberry silk fabrics with excellent temperature- and pH-sensitivity, antibacterial properties and permeability are successfully prepared by surface modification with PNIPAAm/chitosan/poly(ethylene oxide) nanofibers. The nanofibers deposited on the surface of mulberry silk fabric are produced by the electrospinning technique. The surface properties of [...] Read more.
Multifunctional mulberry silk fabrics with excellent temperature- and pH-sensitivity, antibacterial properties and permeability are successfully prepared by surface modification with PNIPAAm/chitosan/poly(ethylene oxide) nanofibers. The nanofibers deposited on the surface of mulberry silk fabric are produced by the electrospinning technique. The surface properties of mulberry silk fabrics were changed by coating process and glutaraldehyde vapor cross-linking technology. The PNIPAAm/chitosan/PEO nanofibers have good apparent morphology and uniform fiber diameter. The contact angle of modified mulberry silk obviously increases with the increasing temperature. The bacterial reduction rates of modification of mulberry silk against E. coli and S. aureus all reach above 80%. Permeability test results show that it can largely improve the poor permeability of coated fabric by intelligent nanofiber modification technology. The air permeability of temperature- and pH-sensitivity mulberry silk fabric modified with PNIPAAm/chitosan/PEO nanofibers, which has reached about 5.1 × 102 L/m2/s, is higher than that of the silk fabric coated with PNIPAAm/chitosan/PEO solution that reached 1.5 × 102 L/m2/s. The nanofibers coated with mulberry silk fabrics show outstanding temperature- and pH-sensitivity, antibacterial properties and permeability, and may be a potential application in medical care, intelligent materials and textiles. Full article
Show Figures

Figure 1

11 pages, 2862 KiB  
Article
Electrospun Chitosan-Gelatin Biopolymer Composite Nanofibers for Horseradish Peroxidase Immobilization in a Hydrogen Peroxide Biosensor
by Siriwan Teepoo, Phanphruk Dawan and Naris Barnthip
Biosensors 2017, 7(4), 47; https://doi.org/10.3390/bios7040047 - 15 Oct 2017
Cited by 61 | Viewed by 8532
Abstract
A biosensor based on chitosan-gelatin composite biopolymers nanofibers is found to be effective for the immobilization of horseradish peroxidase to detect hydrogen peroxide. The biopolymer nanofibers were fabricated by an electrospining technique. Upon optimization of synthesis parameters, biopolymers nanofibers, an average of 80 [...] Read more.
A biosensor based on chitosan-gelatin composite biopolymers nanofibers is found to be effective for the immobilization of horseradish peroxidase to detect hydrogen peroxide. The biopolymer nanofibers were fabricated by an electrospining technique. Upon optimization of synthesis parameters, biopolymers nanofibers, an average of 80 nm in diameter, were obtained and were then modified on the working electrode surface. The effects of the concentration of enzyme, pH, and concentration of the buffer and the working potential on the current response of the nanofibers-modified electrode toward hydrogen peroxide were optimized to obtain the maximal current response. The results found that horseradish peroxidase immobilization on chitosan-gelatin composite biopolymer nanofibers had advantages of fast response, excellent reproducibility, high stability, and showed a linear response to hydrogen peroxide in the concentration range from 0.1 to 1.7 mM with a detection limit of 0.05 mM and exhibited high sensitivity of 44 µA∙mM−1∙cm−2. The developed system was evaluated for analysis of disinfectant samples and showed good agreement between the results obtained by the titration method without significant differences at the 0.05 significance level. The proposed strategy based on chitosan-gelatin composite biopolymer nanofibers for the immobilization of enzymes can be extended for the development of other enzyme-based biosensors. Full article
(This article belongs to the Special Issue Nanomaterials Based Optical Biosensors)
Show Figures

Graphical abstract

Back to TopTop