Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = overlay WSN

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 12082 KB  
Article
Design and Implementation of a Connection between Augmented Reality and Sensors
by Marlon Aguero, Dilendra Maharjan, Maria del Pilar Rodriguez, David Dennis Lee Mascarenas and Fernando Moreu
Robotics 2020, 9(1), 3; https://doi.org/10.3390/robotics9010003 - 1 Jan 2020
Cited by 22 | Viewed by 8882
Abstract
Wireless sensor networks (WSN) are used by engineers to record the behavior of structures. The sensors provide data to be used by engineers to make informed choices and prioritize decisions concerning maintenance procedures, required repairs, and potential infrastructure replacements. However, reliable data collection [...] Read more.
Wireless sensor networks (WSN) are used by engineers to record the behavior of structures. The sensors provide data to be used by engineers to make informed choices and prioritize decisions concerning maintenance procedures, required repairs, and potential infrastructure replacements. However, reliable data collection in the field remains a challenge. The information obtained by the sensors in the field frequently needs further processing, either at the decision-making headquarters or in the office. Although WSN allows data collection and analysis, there is often a gap between WSN data analysis results and the way decisions are made in industry. The industry depends on inspectors’ decisions, so it is of vital necessity to improve the inspectors’ access in the field to data collected from sensors. This paper presents the results of an experiment that shows the way Augmented Reality (AR) may improve the availability of WSN data to inspectors. AR is a tool which overlays the known attributes of an object with the corresponding position on the headset screen. In this way, it allows the integration of reality with a virtual representation provided by a computer in real time. These additional synthetic overlays supply data that may be unavailable otherwise, but it may also display additional contextual information. The experiment reported in this paper involves the application of a smart Strain Gauge Platform, which automatically measures strain for different applications, using a wireless sensor. In this experiment, an AR headset was used to improve actionable data visualization. The results of the reported experiment indicate that since the AR headset makes it possible to visualize information collected from the sensors in a graphic form in real time, it enables automatic, effective, reliable, and instant communication from a smart low-cost sensor strain gauge to a database. Moreover, it allows inspectors to observe augmented data and compare it across time and space, which then leads to appropriate prioritization of infrastructure management decisions based on accurate observations. Full article
(This article belongs to the Special Issue Advances in Inspection Robotic Systems)
Show Figures

Graphical abstract

33 pages, 2723 KB  
Review
Overlay Virtualized Wireless Sensor Networks for Application in Industrial Internet of Things: A Review
by Malvin Nkomo, Gerhard P. Hancke, Adnan M. Abu-Mahfouz, Saurabh Sinha and Adeiza. J. Onumanyi
Sensors 2018, 18(10), 3215; https://doi.org/10.3390/s18103215 - 23 Sep 2018
Cited by 30 | Viewed by 10030
Abstract
In recent times, Wireless Sensor Networks (WSNs) are broadly applied in the Industrial Internet of Things (IIoT) in order to enhance the productivity and efficiency of existing and prospective manufacturing industries. In particular, an area of interest that concerns the use of WSNs [...] Read more.
In recent times, Wireless Sensor Networks (WSNs) are broadly applied in the Industrial Internet of Things (IIoT) in order to enhance the productivity and efficiency of existing and prospective manufacturing industries. In particular, an area of interest that concerns the use of WSNs in IIoT is the concept of sensor network virtualization and overlay networks. Both network virtualization and overlay networks are considered contemporary because they provide the capacity to create services and applications at the edge of existing virtual networks without changing the underlying infrastructure. This capability makes both network virtualization and overlay network services highly beneficial, particularly for the dynamic needs of IIoT based applications such as in smart industry applications, smart city, and smart home applications. Consequently, the study of both WSN virtualization and overlay networks has become highly patronized in the literature, leading to the growth and maturity of the research area. In line with this growth, this paper provides a review of the development made thus far concerning virtualized sensor networks, with emphasis on the application of overlay networks in IIoT. Principally, the process of virtualization in WSN is discussed along with its importance in IIoT applications. Different challenges in WSN are also presented along with possible solutions given by the use of virtualized WSNs. Further details are also presented concerning the use of overlay networks as the next step to supporting virtualization in shared sensor networks. Our discussion closes with an exposition of the existing challenges in the use of virtualized WSN for IIoT applications. In general, because overlay networks will be contributory to the future development and advancement of smart industrial and smart city applications, this review may be considered by researchers as a reference point for those particularly interested in the study of this growing field. Full article
(This article belongs to the Collection Smart Industrial Wireless Sensor Networks)
Show Figures

Figure 1

30 pages, 991 KB  
Article
NEURON: Enabling Autonomicity in Wireless Sensor Networks
by Anastasios Zafeiropoulos, Panagiotis Gouvas, Athanassios Liakopoulos, Gregoris Mentzas and Nikolas Mitrou
Sensors 2010, 10(5), 5233-5262; https://doi.org/10.3390/s100505233 - 25 May 2010
Cited by 7 | Viewed by 15672
Abstract
Future Wireless Sensor Networks (WSNs) will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In [...] Read more.
Future Wireless Sensor Networks (WSNs) will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In this paper a novel protocol for energy efficient deployment, clustering and routing in WSNs is proposed that focuses on the incorporation of autonomic functionalities in the existing approaches. The design of the protocol facilitates the design of innovative applications and services that are based on overlay topologies created through cooperation among the sensor nodes. Full article
Show Figures

Graphical abstract

Back to TopTop