Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = operational forecast sytem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 6511 KB  
Article
A High Resolution Coupled Fire–Atmosphere Forecasting System to Minimize the Impacts of Wildland Fires: Applications to the Chimney Tops II Wildland Event
by Pedro A. Jiménez, Domingo Muñoz-Esparza and Branko Kosović
Atmosphere 2018, 9(5), 197; https://doi.org/10.3390/atmos9050197 - 19 May 2018
Cited by 34 | Viewed by 6392
Abstract
Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. We show that [...] Read more.
Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. We show that a fire forecast system based on a numerical weather prediction (NWP) model coupled with a wildland fire behavior model can provide this forecast. This was illustrated with the Chimney Tops II wildland fire responsible for large socio-economic impacts. The system was run at high horizontal resolution (111 m) over the region affected by the fire to provide a fine representation of the terrain and fuel heterogeneities and explicitly resolve atmospheric turbulence. Our findings suggest that one can use the high spatial resolution winds, fire spread and smoke forecast to minimize the adverse impacts of wildland fires. Full article
(This article belongs to the Special Issue Fire and the Atmosphere)
Show Figures

Figure 1

Back to TopTop