Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = omaveloxolone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1088 KiB  
Review
The Regulation of the Disease-Causing Gene FXN
by Yi Na Dong, Elizabeth Mercado-Ayón, Jennifer Coulman, Liam Flatley, Lucie Vanessa Ngaba, Miniat W. Adeshina and David R. Lynch
Cells 2024, 13(12), 1040; https://doi.org/10.3390/cells13121040 - 15 Jun 2024
Cited by 1 | Viewed by 3131
Abstract
Friedreich’s ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine–adenine–adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron–sulfur cluster [...] Read more.
Friedreich’s ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine–adenine–adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron–sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA. Full article
Show Figures

Figure 1

30 pages, 10649 KiB  
Article
An In Silico Analysis of Genetic Variants and Structural Modeling of the Human Frataxin Protein in Friedreich’s Ataxia
by Loiane Mendonça Abrantes Da Conceição, Lucio Mendes Cabral, Gabriel Rodrigues Coutinho Pereira and Joelma Freire De Mesquita
Int. J. Mol. Sci. 2024, 25(11), 5796; https://doi.org/10.3390/ijms25115796 - 26 May 2024
Cited by 2 | Viewed by 2613
Abstract
Friedreich’s Ataxia (FRDA) stands out as the most prevalent form of hereditary ataxias, marked by progressive movement ataxia, loss of vibratory sensitivity, and skeletal deformities, severely affecting daily functioning. To date, the only medication available for treating FRDA is Omaveloxolone (Skyclarys®), [...] Read more.
Friedreich’s Ataxia (FRDA) stands out as the most prevalent form of hereditary ataxias, marked by progressive movement ataxia, loss of vibratory sensitivity, and skeletal deformities, severely affecting daily functioning. To date, the only medication available for treating FRDA is Omaveloxolone (Skyclarys®), recently approved by the FDA. Missense mutations within the human frataxin (FXN) gene, responsible for intracellular iron homeostasis regulation, are linked to FRDA development. These mutations induce FXN dysfunction, fostering mitochondrial iron accumulation and heightened oxidative stress, ultimately triggering neuronal cell death pathways. This study amalgamated 226 FXN genetic variants from the literature and database searches, with only 18 previously characterized. Predictive analyses revealed a notable prevalence of detrimental and destabilizing predictions for FXN mutations, predominantly impacting conserved residues crucial for protein function. Additionally, an accurate, comprehensive three-dimensional model of human FXN was constructed, serving as the basis for generating genetic variants I154F and W155R. These variants, selected for their severe clinical implications, underwent molecular dynamics (MD) simulations, unveiling flexibility and essential dynamic alterations in their N-terminal segments, encompassing FXN42, FXN56, and FXN78 domains pivotal for protein maturation. Thus, our findings indicate potential interaction profile disturbances in the FXN42, FXN56, and FXN78 domains induced by I154F and W155R mutations, aligning with the existing literature. Full article
Show Figures

Figure 1

30 pages, 1521 KiB  
Review
The Role of NRF2 in Trinucleotide Repeat Expansion Disorders
by Kuo-Hsuan Chang and Chiung-Mei Chen
Antioxidants 2024, 13(6), 649; https://doi.org/10.3390/antiox13060649 - 26 May 2024
Cited by 5 | Viewed by 2737
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an [...] Read more.
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators. Full article
(This article belongs to the Special Issue Role of NRF2 Pathway in Neurodegenerative Diseases)
Show Figures

Figure 1

19 pages, 2702 KiB  
Article
Inhibitors of the Ubiquitin-Mediated Signaling Pathway Exhibit Broad-Spectrum Antiviral Activities against New World Alphaviruses
by Niloufar A. Boghdeh, Brittany McGraw, Michael D. Barrera, Carol Anderson, Haseebullah Baha, Kenneth H. Risner, Ifedayo V. Ogungbe, Farhang Alem and Aarthi Narayanan
Viruses 2023, 15(3), 655; https://doi.org/10.3390/v15030655 - 28 Feb 2023
Cited by 7 | Viewed by 2761
Abstract
New World alphaviruses including Venezuelan Equine Encephalitis Virus (VEEV) and Eastern Equine Encephalitis Virus (EEEV) are mosquito-transmitted viruses that cause disease in humans and equines. There are currently no FDA-approved therapeutics or vaccines to treat or prevent exposure-associated encephalitic disease. The ubiquitin proteasome [...] Read more.
New World alphaviruses including Venezuelan Equine Encephalitis Virus (VEEV) and Eastern Equine Encephalitis Virus (EEEV) are mosquito-transmitted viruses that cause disease in humans and equines. There are currently no FDA-approved therapeutics or vaccines to treat or prevent exposure-associated encephalitic disease. The ubiquitin proteasome system (UPS)-associated signaling events are known to play an important role in the establishment of a productive infection for several acutely infectious viruses. The critical engagement of the UPS-associated signaling mechanisms by many viruses as host–pathogen interaction hubs led us to hypothesize that small molecule inhibitors that interfere with these signaling pathways will exert broad-spectrum inhibitory activity against alphaviruses. We queried eight inhibitors of the UPS signaling pathway for antiviral outcomes against VEEV. Three of the tested inhibitors, namely NSC697923 (NSC), bardoxolone methyl (BARM) and omaveloxolone (OMA) demonstrated broad-spectrum antiviral activity against VEEV and EEEV. Dose dependency and time of addition studies suggest that BARM and OMA exhibit intracellular and post-entry viral inhibition. Cumulatively, our studies indicate that inhibitors of the UPS-associated signaling pathways exert broad-spectrum antiviral outcomes in the context of VEEV and EEEV infection, supporting their translational application as therapeutic candidates to treat alphavirus infections. Full article
(This article belongs to the Special Issue Antivirals against Arboviruses)
Show Figures

Graphical abstract

17 pages, 4782 KiB  
Article
The Xanthine Oxidase Inhibitor Febuxostat Suppresses Adipogenesis and Activates Nrf2
by Yoshiki Higa, Masahiro Hiasa, Hirofumi Tenshin, Emiko Nakaue, Mariko Tanaka, Sooha Kim, Motosumi Nakagawa, So Shimizu, Kotaro Tanimoto, Jumpei Teramachi, Takeshi Harada, Asuka Oda, Masahiro Oura, Kimiko Sogabe, Tomoyo Hara, Ryohei Sumitani, Tomoko Maruhashi, Hiroki Yamagami, Itsuro Endo, Toshio Matsumoto, Eiji Tanaka and Masahiro Abeadd Show full author list remove Hide full author list
Antioxidants 2023, 12(1), 133; https://doi.org/10.3390/antiox12010133 - 5 Jan 2023
Cited by 11 | Viewed by 4610
Abstract
Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in purine catabolism that acts as a novel regulator of adipogenesis. In pathological states, xanthine oxidoreductase activity increases to produce excess reactive oxygen species (ROS). The nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical [...] Read more.
Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in purine catabolism that acts as a novel regulator of adipogenesis. In pathological states, xanthine oxidoreductase activity increases to produce excess reactive oxygen species (ROS). The nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical inducer of antioxidants, which is bound and repressed by a kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm. The Keap1-Nrf2 axis appears to be a major mechanism for robust inducible antioxidant defenses. Here, we demonstrate that febuxostat, a xanthine oxidase inhibitor, alleviates the increase in adipose tissue mass in obese mouse models with a high-fat diet or ovariectomy. Febuxostat disrupts in vitro adipocytic differentiation in adipogenic media. Adipocytes appeared at day 7 in absence or presence of febuxostat were 160.8 ± 21.2 vs. 52.5 ± 12.7 (p < 0.01) in 3T3–L1 cells, and 126.0 ± 18.7 vs. 55.3 ± 13.4 (p < 0.01) in 10T1/2 cells, respectively. Adipocyte differentiation was further enhanced by the addition of hydrogen peroxide, which was also suppressed by febuxostat. Interestingly, febuxostat, but not allopurinol (another xanthine oxidase inhibitor), rapidly induced the nuclear translocation of Nrf2 and facilitated the degradation of Keap1, similar to the electrophilic Nrf2 activator omaveloxolone. These results suggest that febuxostat alleviates adipogenesis under oxidative conditions, at least in part by suppressing ROS production and Nrf2 activation. Regulation of adipocytic differentiation by febuxostat is expected to inhibit obesity due to menopause or overeating. Full article
Show Figures

Figure 1

19 pages, 3398 KiB  
Article
Application of a Human Blood Brain Barrier Organ-on-a-Chip Model to Evaluate Small Molecule Effectiveness against Venezuelan Equine Encephalitis Virus
by Niloufar A. Boghdeh, Kenneth H. Risner, Michael D. Barrera, Clayton M. Britt, David K. Schaffer, Farhang Alem, Jacquelyn A. Brown, John P. Wikswo and Aarthi Narayanan
Viruses 2022, 14(12), 2799; https://doi.org/10.3390/v14122799 - 15 Dec 2022
Cited by 22 | Viewed by 3654
Abstract
The blood brain barrier (BBB) is a multicellular microenvironment that plays an important role in regulating bidirectional transport to and from the central nervous system (CNS). Infections by many acutely infectious viruses such as alphaviruses and flaviviruses are known to impact the integrity [...] Read more.
The blood brain barrier (BBB) is a multicellular microenvironment that plays an important role in regulating bidirectional transport to and from the central nervous system (CNS). Infections by many acutely infectious viruses such as alphaviruses and flaviviruses are known to impact the integrity of the endothelial lining of the BBB. Infection by Venezuelan Equine Encephalitis Virus (VEEV) through the aerosol route causes significant damage to the integrity of the BBB, which contributes to long-term neurological sequelae. An effective therapeutic intervention strategy should ideally not only control viral load in the host, but also prevent and/or reverse deleterious events at the BBB. Two dimensional monocultures, including trans-well models that use endothelial cells, do not recapitulate the intricate multicellular environment of the BBB. Complex in vitro organ-on-a-chip models (OOC) provide a great opportunity to introduce human-like experimental models to understand the mechanistic underpinnings of the disease state and evaluate the effectiveness of therapeutic candidates in a highly relevant manner. Here we demonstrate the utility of a neurovascular unit (NVU) in analyzing the dynamics of infection and proinflammatory response following VEEV infection and therapeutic effectiveness of omaveloxolone to preserve BBB integrity and decrease viral and inflammatory load. Full article
(This article belongs to the Special Issue Alphaviruses)
Show Figures

Graphical abstract

21 pages, 7165 KiB  
Review
Activation of Nrf2 to Optimise Immune Responses to Intracerebral Haemorrhage
by James J. M. Loan, Rustam Al-Shahi Salman, Barry W. McColl and Giles E. Hardingham
Biomolecules 2022, 12(10), 1438; https://doi.org/10.3390/biom12101438 - 7 Oct 2022
Cited by 12 | Viewed by 4663
Abstract
Haemorrhage into the brain parenchyma can be devastating. This manifests as spontaneous intracerebral haemorrhage (ICH) after head trauma, and in the context of vascular dementia. Randomised controlled trials have not reliably shown that haemostatic treatments aimed at limiting ICH haematoma expansion and surgical [...] Read more.
Haemorrhage into the brain parenchyma can be devastating. This manifests as spontaneous intracerebral haemorrhage (ICH) after head trauma, and in the context of vascular dementia. Randomised controlled trials have not reliably shown that haemostatic treatments aimed at limiting ICH haematoma expansion and surgical approaches to reducing haematoma volume are effective. Consequently, treatments to modulate the pathophysiological responses to ICH, which may cause secondary brain injury, are appealing. Following ICH, microglia and monocyte derived cells are recruited to the peri-haematomal environment where they phagocytose haematoma breakdown products and secrete inflammatory cytokines, which may trigger both protective and harmful responses. The transcription factor Nrf2, is activated by oxidative stress, is highly expressed by central nervous system microglia and macroglia. When active, Nrf2 induces a transcriptional programme characterised by increased expression of antioxidant, haem and heavy metal detoxification and proteostasis genes, as well as suppression of proinflammatory factors. Therefore, Nrf2 activation may facilitate adaptive-protective immune cell responses to ICH by boosting resistance to oxidative stress and heavy metal toxicity, whilst limiting harmful inflammatory signalling, which can contribute to further blood brain barrier dysfunction and cerebral oedema. In this review, we consider the responses of immune cells to ICH and how these might be modulated by Nrf2 activation. Finally, we propose potential therapeutic strategies to harness Nrf2 to improve the outcomes of patients with ICH. Full article
Show Figures

Figure 1

19 pages, 3828 KiB  
Article
In Vitro Efficacy and Molecular Mechanism of Curcumin Analog in Pathological Regulation of Spinocerebellar Ataxia Type 3
by Yu-Ling Wu, Jui-Chih Chang, Yi-Chun Chao, Hardy Chan, Mingli Hsieh and Chin-San Liu
Antioxidants 2022, 11(7), 1389; https://doi.org/10.3390/antiox11071389 - 18 Jul 2022
Cited by 7 | Viewed by 3518
Abstract
Unlike other nuclear factor erythroid-2-related factor 2 (Nrf2) activators, the mechanism of action of curcumin analog, ASC-JM17 (JM17), in regulating oxidative homeostasis remains unknown. Spinocerebellar ataxia type 3 (SCA3) is an inherited polyglutamine neurodegenerative disease caused mainly by polyglutamine neurotoxicity and oxidative stress. [...] Read more.
Unlike other nuclear factor erythroid-2-related factor 2 (Nrf2) activators, the mechanism of action of curcumin analog, ASC-JM17 (JM17), in regulating oxidative homeostasis remains unknown. Spinocerebellar ataxia type 3 (SCA3) is an inherited polyglutamine neurodegenerative disease caused mainly by polyglutamine neurotoxicity and oxidative stress. Presently, we compared actions of JM17 with those of known Nrf2 activators, omaveloxolone (RTA-408) and dimethyl fumarate (DMF), using human neuroblastoma SK-N-SH cells with stable transfection of full-length ataxin-3 protein with 78 CAG repeats (MJD78) to clarify the resulting pathological mechanism by assaying mitochondrial function, mutant ataxin-3 protein toxicity, and oxidative stress. JM17, 1 μM, comprehensively restored mitochondrial function, decreased mutant protein aggregates, and attenuated intracellular/mitochondrial reactive oxygen species (ROS) levels. Although JM17 induced dose-dependent Nrf2 activation, a low dose of JM17 (less than 5 μM) still had a better antioxidant ability compared to the other Nrf2 activators and specifically increased mitochondrial superoxide dismutase 2 in an Nrf2-dependent manner as shown by knockdown experiments with siRNA. It showed that activation of Nrf2 in response to ROS generated in mitochondria could play an import role in the benefit of JM17. This study presents the diversified regulation of JM17 in a pathological process and helped develop more effective therapeutic strategies for SCA3. Full article
Show Figures

Figure 1

18 pages, 5772 KiB  
Article
The Effects of Two Nrf2 Activators, Bardoxolone Methyl and Omaveloxolone, on Retinal Ganglion Cell Survival during Ischemic Optic Neuropathy
by Jia-Ying Chien, Yu-Yau Chou, Jhih-Wei Ciou, Fang-Yun Liu and Shun-Ping Huang
Antioxidants 2021, 10(9), 1466; https://doi.org/10.3390/antiox10091466 - 15 Sep 2021
Cited by 20 | Viewed by 4891
Abstract
Nonarteritic anterior ischemic optic neuropathy (NAION) is one of the most common acute optic neuropathies that affect the over 55-year-old population. NAION causes the loss of visual function, and it has no safe and effective therapy. Bardoxolone methyl (methyl 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate; CDDO-Me; RTA 402) [...] Read more.
Nonarteritic anterior ischemic optic neuropathy (NAION) is one of the most common acute optic neuropathies that affect the over 55-year-old population. NAION causes the loss of visual function, and it has no safe and effective therapy. Bardoxolone methyl (methyl 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate; CDDO-Me; RTA 402) is a semisynthetic triterpenoid with effects against antioxidative stress and inflammation in neurodegeneration and kidney disease that activates the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Moreover, RTA 402 is an FDA-approved compound for the treatment of solid tumors, lymphoid malignancies, melanoma, and chronic kidney disease. Omaveloxolone (RTA 408) is an activator of Nrf2 and an inhibitor of NFκB, possessing antioxidative and anti-inflammatory activities in mitochondrial bioenergetics. RTA 408 is also under clinical investigation for Friedreich ataxia (FA). In this study, a rodent anterior ischemic optic neuropathy (rAION) model induced by photothrombosis was used to examine the therapeutic effects of RTA 402 and RTA 408. Treatment with RTA402 results in antiapoptotic, antioxidative stress, anti-inflammatory, and myelin-preserving effects on retinal ganglion cell (RGC) survival and visual function via regulation of NQO1 and HO-1, reduced IL-6 and Iba1 expression in macrophages, and promoted microglial expression of TGF-β and Ym1 + 2 in the retina and optic nerve. However, these effects were not observed after RTA 408 treatment. Our results provide explicit evidence that RTA 402 modulates the Nrf2 and NFκB signaling pathways to protect RGCs from apoptosis and maintain the visual function in an rAION model. These findings indicate that RTA 402 may a potential therapeutic agent for ischemic optic neuropathy. Full article
(This article belongs to the Special Issue Advances in Oxidative Stress and Eye Diseases)
Show Figures

Figure 1

Back to TopTop