Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = nucleus tractus solitaries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8090 KiB  
Review
Interaction of the Vagus Nerve and Serotonin in the Gut–Brain Axis
by Young Keun Hwang and Jae Sang Oh
Int. J. Mol. Sci. 2025, 26(3), 1160; https://doi.org/10.3390/ijms26031160 - 29 Jan 2025
Cited by 12 | Viewed by 11074
Abstract
The gut–brain axis represents an important bidirectional communication network, with the vagus nerve acting as a central conduit for peripheral signals from the various gut organs to the central nervous system. Among the molecular mediators involved, serotonin (5-HT), synthesized predominantly by enterochromaffin cells [...] Read more.
The gut–brain axis represents an important bidirectional communication network, with the vagus nerve acting as a central conduit for peripheral signals from the various gut organs to the central nervous system. Among the molecular mediators involved, serotonin (5-HT), synthesized predominantly by enterochromaffin cells in the gut, plays a pivotal role. Gut-derived serotonin activates vagal afferent fibers, transmitting signals to the nucleus tractus solitarius (NTS) and modulating serotonergic neurons in the dorsal raphe nucleus (DRN) as well as the norepinephrinergic neurons in the locus coeruleus (LC). This interaction influences emotional regulation, stress responses, and immune modulation. Emerging evidence also highlights the role of microbial metabolites, particularly short-chain fatty acids (SCFAs), in enhancing serotonin synthesis and vagal activity, thereby shaping gut–brain communication. This review synthesizes the current knowledge on serotonin signaling, vagal nerve pathways, and central autonomic regulation, with an emphasis on their implications for neuropsychiatric and gastrointestinal disorders. By elucidating these pathways, novel therapeutic strategies targeting the gut–brain axis may be developed to improve mental and physical health outcomes. Full article
Show Figures

Figure 1

Back to TopTop