Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = node wiener impact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 430 KB  
Article
Optimizing C-RAN Backhaul Topologies: A Resilience-Oriented Approach Using Graph Invariants
by Valerio Frascolla, Cristina K. Dominicini, Marcia H. M. Paiva, Gilles Caporossi, Marcelo Antonio Marotta, Moises R. N. Ribeiro, Marcelo E. V. Segatto, Magnos Martinello, Maxwell E. Monteiro and Cristiano Bonato Both
Appl. Sci. 2019, 9(1), 136; https://doi.org/10.3390/app9010136 - 2 Jan 2019
Cited by 14 | Viewed by 3888
Abstract
At the verge of the launch of the first commercial fifth generation (5G) system, trends in wireless and optical networks are proceeding toward increasingly dense deployments, supporting resilient interconnection for applications that carry higher and higher capacity and tighter latency requirements. These developments [...] Read more.
At the verge of the launch of the first commercial fifth generation (5G) system, trends in wireless and optical networks are proceeding toward increasingly dense deployments, supporting resilient interconnection for applications that carry higher and higher capacity and tighter latency requirements. These developments put increasing pressure on network backhaul and drive the need for a re-examination of traditional backhaul topologies. Challenges of impending networks cannot be tackled by star and ring approaches due to their lack of intrinsic survivability and resilience properties, respectively. In support of this re-examination, we propose a backhaul topology design method that formulates the topology optimization as a graph optimization problem by capturing both the objective and constraints of optimization in graph invariants. Our graph theoretic approach leverages well studied mathematical techniques to provide a more systematic alternative to traditional approaches to backhaul design. Specifically, herein, we optimize over some known graph invariants, such as maximum node degree, topology diameter, average distance, and edge betweenness, as well as over a new invariant called node Wiener impact, to achieve baseline backhaul topologies that match the needs for resilient future wireless and optical networks. Full article
Show Figures

Figure 1

Back to TopTop