Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = needle valve opening ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6490 KiB  
Article
Effects of the Wall Temperature on Rarefied Gas Flows and Heat Transfer in a Micro-Nozzle
by Shurui Zhang, Yong Li, Xudong Wang, Songcai Lu, Yusong Yu and Jun Yang
Micromachines 2024, 15(1), 22; https://doi.org/10.3390/mi15010022 - 22 Dec 2023
Viewed by 1665
Abstract
When the satellite is in orbit, the thruster will experience drastic temperature changes (100–1000 K) under solar radiation, which will affect the rarefied gas flow state in the micro-nozzle structure of the cold gas micro-thruster. In this study, the effect of different wall [...] Read more.
When the satellite is in orbit, the thruster will experience drastic temperature changes (100–1000 K) under solar radiation, which will affect the rarefied gas flow state in the micro-nozzle structure of the cold gas micro-thruster. In this study, the effect of different wall temperatures on the rarefied flow and heat transfer in the micro-nozzle is investigated based on the DSMC method. The micro-nozzle structure in this paper has a micro-channel with a large length-to-diameter ratio of 10 and a micro-scale needle valve displacement (maximum needle valve displacement up to 4 μm). This leads to more pronounced multiscale flow characteristics in the micro-nozzle, which is more influenced by the change in wall temperature. At wall temperatures ranging from 100 K to 1000 K, the spatial distribution of local Kn distribution, slip velocity distribution, temperature, and wall heat flux distribution in the micro-nozzle were calculated. The slip flow region is located in the flow channel and transforms into transition flow as the slip velocity reaches approximately 50 m/s. The spatial distribution of the flow pattern is dominated by the wall temperature at small needle valve opening ratios. The higher the wall temperature, the smaller the temperature drop ratio in the low-temperature region inside the micro-nozzle. The results of the study provide a reference for the design of temperature control of micro-nozzles in cold gas micro-thrusters. Full article
(This article belongs to the Topic Micro-Mechatronic Engineering)
Show Figures

Figure 1

15 pages, 3972 KiB  
Article
Direct Simulation Monte Carlo Simulation of the Effect of Needle Valve Structures on the Rarefied Flow of Cold Gas Thrusters
by Songcai Lu, Xuhui Liu, Xudong Wang, Shurui Zhang, Yusong Yu and Yong Li
Micromachines 2023, 14(8), 1585; https://doi.org/10.3390/mi14081585 - 11 Aug 2023
Cited by 1 | Viewed by 1600
Abstract
The needle valve, serving as the flow control unit of the thruster system, is a crucial component of the entire thruster. Its performance directly impacts the flow state of the rarefied gas in the micro-nozzle structure of the cold gas micro-thruster, thereby exerting [...] Read more.
The needle valve, serving as the flow control unit of the thruster system, is a crucial component of the entire thruster. Its performance directly impacts the flow state of the rarefied gas in the micro-nozzle structure of the cold gas micro-thruster, thereby exerting a significant influence on the high precision and stability of the propulsion system as a whole. This study examines the impact of different needle valve structures on the flow and thrust in micro-nozzles using the DSMC method. The analysis includes discussions on the spatial distribution, Kn distribution, slip velocity distribution, and pressure distribution of the micro-nozzle’s flow mechanism. Notably, increased curvature of the needle valve enhances the flow velocity in the throat and expansion section. The magnitude of the curvature directly affects the flow velocity, with larger curvatures resulting in higher velocities. Comparing different spool shapes, the conical spool shape minimizes the velocity gradient in the high-speed region at the junction between the spool area and the outlet pipe, particularly with a wide opening. Increasing the curvature of the spool leads to a higher velocity in the expansion section. Consequently, an arc-shaped spool valve maximizes the nitrogen flow at the nozzle during wide openings, thereby enhancing thrust. These research findings serve as a valuable reference for the structural design of the needle valve in the micro-nozzle of the cold gas micro-thruster. Full article
Show Figures

Figure 1

17 pages, 9069 KiB  
Article
DSMC Simulation of the Effect of Needle Valve Opening Ratio on the Rarefied Gas Flows inside a Micronozzle with a Large Length-to-Diameter Ratio
by Xudong Wang, Yong Li, Yong Gao, Chenguang Gao and Weichun Fu
Aerospace 2023, 10(2), 126; https://doi.org/10.3390/aerospace10020126 - 30 Jan 2023
Cited by 4 | Viewed by 2534
Abstract
The cold gas micro-propulsion system can provide low noise and ultra-high accuracy thrust for satellite platforms for space gravitational wave detection, high-precision earth gravity field measurement. In this study, the effect of different needle valve opening ratios on the rarefied flow characteristics of [...] Read more.
The cold gas micro-propulsion system can provide low noise and ultra-high accuracy thrust for satellite platforms for space gravitational wave detection, high-precision earth gravity field measurement. In this study, the effect of different needle valve opening ratios on the rarefied flow characteristics of a micro-nozzle in a cold gas micro-propulsion system was investigated based on DSMC method. The special feature of the currently studied micro-nozzle is that it has a section of micro-channel with a large length–diameter ratio up to 4.5. Due to the extremely small needle valve displacement of the nozzle (minimum needle valve displacement up to 1.7 μm), a finely structured mesh was used. The molecular particle and macro flow characteristics inside the micro-nozzle were calculated for the conditions of a needle valve opening ratio from 5% to 98%. The throttling effect of the throat has a significant effect on the rarefied flow in the micro-nozzle; especially under the tiny opening, this effect is more significant. The spatial distribution of continuous flow, transition flow, and free molecular flow in the micro-nozzle varies at different needle valve opening ratios. As the needle valve opening ratio increases, the continuous flow will gradually fill the microfluidic region. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges)
Show Figures

Figure 1

Back to TopTop