Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = n-heptyl ferulate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5592 KiB  
Article
Bioactivity of Fractions and Pure Compounds from Jatropha cordata (Ortega) Müll. Arg. Bark Extracts
by Yazmín B. Jiménez-Nevárez, Julio Montes-Avila, Miguel Angel Angulo-Escalante, Ninfa Yaret Nolasco-Quintana, Judith González Christen, Israel Hurtado-Díaz, Eber Addí Quintana-Obregón, J. Basilio Heredia, José Benigno Valdez-Torres and Laura Alvarez
Plants 2023, 12(21), 3780; https://doi.org/10.3390/plants12213780 - 6 Nov 2023
Viewed by 2347
Abstract
Medicines for chronic inflammation can cause gastric ulcers and hepatic and renal issues. An alternative treatment for chronic inflammation is that of natural bioactive compounds, which present low side effects. Extracts of Jatropha cordata (Ortega) Müll. Arg. have been evaluated for their cytotoxicity [...] Read more.
Medicines for chronic inflammation can cause gastric ulcers and hepatic and renal issues. An alternative treatment for chronic inflammation is that of natural bioactive compounds, which present low side effects. Extracts of Jatropha cordata (Ortega) Müll. Arg. have been evaluated for their cytotoxicity and anti-inflammatory activity; however, testing pure compounds would be of greater interest. Campesteryl palmitate, n-heptyl ferulate, palmitic acid, and a mixture of sterols, i.e., brassicasterol, campesterol, β-sitosterol, and stigmasterol, were obtained from an ethyl acetate extract from J. cordata (Ortega) Müll. Arg. bark using column chromatography. The toxicity and in vitro anti-inflammatory activities were evaluated using RAW 264.7 murine macrophage cells. None of the products assessed exhibited toxicity. The sterol mixture exhibited greater anti-inflammatory activity than the positive control, and nitric oxide (NO) inhibition percentages were 37.97% and 41.68% at 22.5 μg/mL and 30 μg/mL, respectively. In addition, n-heptyl ferulate decreased NO by 30.61% at 30 μg/mL, while campesteryl palmitate did not show anti-inflammatory activity greater than the positive control. The mixture and n-heptyl ferulate showed NO inhibition; hence, we may conclude that these compounds have anti-inflammatory potential. Additionally, further research and clinical trials are needed to fully explore the therapeutic potential of these bioactive compounds and their efficacy in treating chronic inflammation. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Figure 1

Back to TopTop