Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mystacial vibrissae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3856 KiB  
Article
The Transcriptional Regulator Prdm1 Is Essential for the Early Development of the Sensory Whisker Follicle and Is Linked to the Beta-Catenin First Dermal Signal
by Pierluigi G. Manti, Fabrice Darbellay, Marion Leleu, Aisling Y. Coughlan, Bernard Moret, Julien Cuennet, Frederic Droux, Magali Stoudmann, Gian-Filippo Mancini, Agnès Hautier, Jessica Sordet-Dessimoz, Stephane D. Vincent, Giuseppe Testa, Giulio Cossu and Yann Barrandon
Biomedicines 2022, 10(10), 2647; https://doi.org/10.3390/biomedicines10102647 - 20 Oct 2022
Cited by 4 | Viewed by 5222
Abstract
Prdm1 mutant mice are one of the rare mutant strains that do not develop whisker hair follicles while still displaying a pelage. Here, we show that Prdm1 is expressed at the earliest stage of whisker development in clusters of mesenchymal cells before placode [...] Read more.
Prdm1 mutant mice are one of the rare mutant strains that do not develop whisker hair follicles while still displaying a pelage. Here, we show that Prdm1 is expressed at the earliest stage of whisker development in clusters of mesenchymal cells before placode formation. Its conditional knockout in the murine soma leads to the loss of expression of Bmp2, Shh, Bmp4, Krt17, Edar, and Gli1, though leaving the β-catenin-driven first dermal signal intact. Furthermore, we show that Prdm1 expressing cells not only act as a signaling center but also as a multipotent progenitor population contributing to the several lineages of the adult whisker. We confirm by genetic ablation experiments that the absence of macro vibrissae reverberates on the organization of nerve wiring in the mystacial pads and leads to the reorganization of the barrel cortex. We demonstrate that Lef1 acts upstream of Prdm1 and identify a primate-specific deletion of a Lef1 enhancer named Leaf. This loss may have been significant in the evolutionary process, leading to the progressive defunctionalization and disappearance of vibrissae in primates. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

24 pages, 6002 KiB  
Review
Review of Recent Bio-Inspired Design and Manufacturing of Whisker Tactile Sensors
by Mohamad-Ammar Sayegh, Hammam Daraghma, Samir Mekid and Salem Bashmal
Sensors 2022, 22(7), 2705; https://doi.org/10.3390/s22072705 - 1 Apr 2022
Cited by 24 | Viewed by 6685
Abstract
Whisker sensors are a class of tactile sensors that have recently attracted attention. Inspired by mammals’ whiskers known as mystacial vibrissae, they have displayed tremendous potential in a variety of applications e.g., robotics, underwater vehicles, minimally invasive surgeries, and leak detection. This paper [...] Read more.
Whisker sensors are a class of tactile sensors that have recently attracted attention. Inspired by mammals’ whiskers known as mystacial vibrissae, they have displayed tremendous potential in a variety of applications e.g., robotics, underwater vehicles, minimally invasive surgeries, and leak detection. This paper provides a supplement to the recent tactile sensing techniques’ designs of whiskers that only sense at their base, as well as the materials employed, and manufacturing techniques. The article delves into the technical specifications of these sensors, such as the resolution, measurement range, sensitivity, durability, and recovery time, which determine their performance. The sensors’ sensitivity varies depending on the measured physical quantity; for example, the pressure sensors had an intermediate sensitivity of 58%/Pa and a response time of around 90 ms, whereas the force sensors that function based on piezoelectric effects exhibited good linearity in the measurements with a resolution of 3 µN and sensitivity of 0.1682 mV/µN. Some sensors were used to perform spatial mapping and the identification of the geometry and roughness of objects with a reported resolution of 25 nm. The durability and recovery time showed a wide range of values, with the maximum durability being 10,000 cycles and the shortest recovery time being 5 ms. Furthermore, the paper examines the fabrication of whiskers at the micro- and nanoscales, as well as their contributions to mechanical and thermal behavior. The commonly used manufacturing techniques of 3D printing, PDMS casting, and screen printing were used in addition to several micro and nanofabrication techniques such as photolithography, etching, and chemical vapor deposition. Lastly, the paper discusses the main potential applications of these sensors and potential research gaps in this field. In particular, the operation of whisker sensors under high temperatures or high pressure requires further investigation, as does the design of sensors to explore larger topologies. Full article
(This article belongs to the Section State-of-the-Art Sensors Technologies)
Show Figures

Figure 1

Back to TopTop