Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = multimodal disciplinary knowledge graph

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1467 KB  
Article
MDKAG: Retrieval-Augmented Educational QA Powered by a Multimodal Disciplinary Knowledge Graph
by Xu Zhao, Guozhong Wang and Yufei Lu
Appl. Sci. 2025, 15(16), 9095; https://doi.org/10.3390/app15169095 - 18 Aug 2025
Viewed by 962
Abstract
With the accelerated digital transformation in education, the efficient integration of massive multimodal instructional resources and the support for interactive question answering (QA) remains a prominent challenge. This study introduces Multimodal Disciplinary Knowledge-Augmented Generation (MDKAG), a framework integrating retrieval-augmented generation (RAG) with a [...] Read more.
With the accelerated digital transformation in education, the efficient integration of massive multimodal instructional resources and the support for interactive question answering (QA) remains a prominent challenge. This study introduces Multimodal Disciplinary Knowledge-Augmented Generation (MDKAG), a framework integrating retrieval-augmented generation (RAG) with a multimodal disciplinary knowledge graph (MDKG). MDKAG first extracts high-precision entities from digital textbooks, lecture slides, and classroom videos by using the Enhanced Representation through Knowledge Integration 3.0 (ERNIE 3.0) model and then links them into a graph that supports fine-grained retrieval. At inference time, the framework retrieves graph-adjacent passages, integrates multimodal data, and feeds them into a large language model (LLM) to generate context-aligned answers. An answer-verification module checks semantic overlap and entity coverage to filter hallucinations and triggers incremental graph updates when new concepts appear. Experiments on three university courses show that MDKAG reduces hallucination rates by up to 23% and increases answer accuracy by 11% over text-only RAG and knowledge-augmented generation (KAG) baselines, demonstrating strong adaptability across subject domains. The results indicate that MDKAG offers an effective route for scalable knowledge organization and reliable interactive QA in education. Full article
Show Figures

Figure 1

Back to TopTop