Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = mono crystalline diamond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7095 KB  
Article
Experiment Comparative Analysis of Feed Rate with Velocity Control in Cutting Mono Crystalline Silicon Using a Diamond Wire Saw
by Jiabin Wang, Shujuan Li and Lie Liang
Micromachines 2024, 15(4), 473; https://doi.org/10.3390/mi15040473 - 29 Mar 2024
Cited by 4 | Viewed by 1849
Abstract
Fixed-diamond abrasive wire saw cutting is one of the most common methods for cutting hard and brittle materials. This process has unique advantages including a narrow kerf and the ability to use a relatively small cutting force. In the cutting process, controlling the [...] Read more.
Fixed-diamond abrasive wire saw cutting is one of the most common methods for cutting hard and brittle materials. This process has unique advantages including a narrow kerf and the ability to use a relatively small cutting force. In the cutting process, controlling the main process parameters can improve the processing efficiency, obtaining a better processing surface roughness. This work designs the PI controller (Proportional–Integral controller) based on the reciprocating wire saw cutting process. The control objects are the workpiece feed rate and wire saw velocity, and the control objective is the normal cutting force. For the control trials, several reference values of various normal cutting forces were chosen. The effects of feed rate and saw velocity on the cutting surface finish and cutting time were investigated in this work using wire saw cutting analysis on a square monocrystalline silicon specimen. The results of this study showed that under a constant applied force of 2.5 N, the optimal feed rate of the diamond wire through the specimen could reduce cutting time by 42% while achieving a 60% improvement in the measured surface finish. Likewise, optimal control of the wire saw velocity could reduce cycle time by 18% with a 45% improvement in the surface finish. Consequently, the feed speed control is more effective than the wire saw velocity. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

2 pages, 177 KB  
Abstract
Timing Performances and Radiation Hardness of 3D Diamond Detectors
by Lucio Anderlini, Marco Bellini, Vladimir Cindro, Chiara Corsi, Keida Kanxheri, Stefano Lagomarsino, Chiara Lucarelli, Arianna Morozzi, Giovanni Passaleva, Daniele Passeri, Silvio Sciortino, Leonello Servoli and Michele Veltri
Eng. Proc. 2022, 21(1), 25; https://doi.org/10.3390/engproc2022021025 - 25 Aug 2022
Viewed by 1376
Abstract
High time resolution and extreme radiation hardness are key for detectors to be operated in future particle accelerators and in space or medical applications. With respect to these relevant properties, we report here on performances of pixel sensors prepared on mono- and poly-crystalline [...] Read more.
High time resolution and extreme radiation hardness are key for detectors to be operated in future particle accelerators and in space or medical applications. With respect to these relevant properties, we report here on performances of pixel sensors prepared on mono- and poly-crystalline synthetic Chemical Vapor Deposited (CVD) diamonds, by fast laser modification via multiphoton absorption from a 50 fs, 800 nm, Ti:Sa source. The research has been carried out in the framework of the Timespot experiment of the Italian National Institute for Nuclear Physics (INFN) aimed to achieve both high spatial resolution (55 μm pitch) and very high time resolution (tens of picoseconds) with very radiation tolerant detectors. Timespot exploits the recent 3D electrode architecture to enhance both time resolution and radiation hardness with respect to standard planar silicon and diamond detectors. We present here a major step forward in material engineering and fabrication procedure, yielding a time resolution improvement of our devices from the initial 280 ps to the present 80 ps, bringing this figure of merit very close to that allowed by the more mature 3D silicon technology. Recent results will be presented, and strategies for further improvements will be discussed. Since diamond is known to be a very radiation-tolerant material, it is considered very promising for implementing devices planned for very fast response and radiation hardness. We present results on a thorough study of polycrystalline and monocrystalline diamond sensors irradiated up to a fluence level of 1016 neq (1 MeV)/cm2. The superior radiation hardness of the 3D architecture is demonstrated with respect to the planar detectors. We have also verified that the radiation hardness increases with increasing bulk electrode density. The results are discussed and compared with other radiation hardness studies carried out on 3D diamond sensors. Full article
(This article belongs to the Proceedings of The 9th International Symposium on Sensor Science)
13 pages, 21178 KB  
Article
Milling of an Aluminium Matrix Composite Using MCD-Tipped Tools with Adjusted Corner and Minor Cutting Edge Geometries
by Benjamin Clauß and Andreas Schubert
J. Compos. Sci. 2021, 5(9), 235; https://doi.org/10.3390/jcs5090235 - 4 Sep 2021
Viewed by 2876
Abstract
Aluminium matrix composites (AMCs) represent suitable materials for lightweight design applications. The abrasive ceramic reinforcements typically require diamond cutting materials to prevent excessive tool wear. In milling with diamond cutting materials the influence of cutting parameters was already examined to a significant extent. [...] Read more.
Aluminium matrix composites (AMCs) represent suitable materials for lightweight design applications. The abrasive ceramic reinforcements typically require diamond cutting materials to prevent excessive tool wear. In milling with diamond cutting materials the influence of cutting parameters was already examined to a significant extent. Investigations concerning the effect of modified tool geometries are limited and the potentials with regard to the geometrical and physical surface properties are unclear. Accordingly, experimental investigations in milling of a 10 vol.% SiC particle-reinforced aluminium wrought alloy EN AW-2017 T4 were addressed. The effect of modified corner and minor cutting edge geometries were investigated based on mono crystalline diamond (MCD)-tipped tools to benefit stable process conditions. The results indicated achievable areal roughness values in the range around 0.2μm. Especially the application of the lowest cutting edge angle and a trailing minor cutting edge led to strong fluctuations of the surface parameters. The lowest valley void volumes were achieved with an arched minor cutting edge. Generally, finish machining led to stronger compressive residual stresses compared to the state prior to machining. The strongest increase was achieved using a corner radius combined with a straight minor cutting edge. It is concluded that reduced effective radii generating the surface enable an acceptable surface structure and strong compressive residual stresses and should be addressed in further investigations. Full article
Show Figures

Figure 1

Back to TopTop