Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = modified stainless steel microneedle (MN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5289 KiB  
Article
A Hybrid Stainless-Steel SPME Microneedle Electrode Sensor for Dual Electrochemical and GC-MS Analysis
by Samuel M. Mugo, Scott V. Robertson and Marika Wood
Sensors 2023, 23(4), 2317; https://doi.org/10.3390/s23042317 - 19 Feb 2023
Cited by 9 | Viewed by 2787
Abstract
A mechanically robust in-tube stainless steel microneedle solid phase microextraction (SPME) platform for dual electrochemical and chromatographic detection has been demonstrated. The SPME microneedle was fabricated by layer-by-layer (LbL) in-tube coating, consisting of carbon nanotube (CNT)/cellulose nanocrystal (CNC) film layered with an electrically [...] Read more.
A mechanically robust in-tube stainless steel microneedle solid phase microextraction (SPME) platform for dual electrochemical and chromatographic detection has been demonstrated. The SPME microneedle was fabricated by layer-by-layer (LbL) in-tube coating, consisting of carbon nanotube (CNT)/cellulose nanocrystal (CNC) film layered with an electrically conductive polyaniline (PANI) hydrogel layer (PANI@CNT/CNC SPME microneedle (MN)). The PANI@CNT/CNC SPME MN showed effective analysis of caffeine by GC-MS with an LOD of 26 mg/L and excellent precision across the dynamic range. Additionally, the PANI@CNT/CNC SPME MN demonstrated a 67% increase in sensitivity compared to a commercial SPME fiber, while being highly robust for repeated use without loss in performance. For electrochemical detection, the PANI@CNT/CNC SPME MN showed excellent performance for the detection of 3-caffeoylquinic acid (3-CQA). The dynamic range and limits of detection (LOD) for 3-CQA analysis were 75–448 mg/L and 11 mg/L, respectively. The PANI@CNT/CNC SPME MN was demonstrated to accurately determine the caffeine content and 3-CQA in tea samples and dark roast coffee, respectively. The PANI@CNT/CNC SPME MN was used for semiquantitative antioxidant determination and composition analysis in kiwi fruit using electrochemistry and SPME-coupled GC-MS, respectively. Full article
(This article belongs to the Special Issue Advances and Applications of Electrochemical Sensors and Biosensors)
Show Figures

Figure 1

14 pages, 4783 KiB  
Article
Sensitive Electrochemical Non-Enzymatic Detection of Glucose Based on Wireless Data Transmission
by Young-Joon Kim, Somasekhar R. Chinnadayyala, Hien T. Ngoc Le and Sungbo Cho
Sensors 2022, 22(7), 2787; https://doi.org/10.3390/s22072787 - 5 Apr 2022
Cited by 19 | Viewed by 5772
Abstract
Miniaturization and wireless continuous glucose monitoring are key factors for the successful management of diabetes. Electrochemical sensors are very versatile and can be easily miniaturized for wireless glucose monitoring. The authors report a microneedle-based enzyme-free electrochemical wireless sensor for painless and continuous glucose [...] Read more.
Miniaturization and wireless continuous glucose monitoring are key factors for the successful management of diabetes. Electrochemical sensors are very versatile and can be easily miniaturized for wireless glucose monitoring. The authors report a microneedle-based enzyme-free electrochemical wireless sensor for painless and continuous glucose monitoring. The microneedles (MNs) fabricated consist of a 3 × 5 sharp and stainless-steel electrode array configuration. Each MN in the 3 × 5 array has 575 µm × 150 µm in height and width, respectively. A glucose-catalyzing layer, porous platinum black, was electrochemically deposited on the tips of the MNs by applying a fixed cathodic current of 2.5 mA cm−2 for a period of 200 s. For the non-interference glucose sensing, the platinum (Pt)-black-coated MN was carefully packaged into a biocompatible ionomer, nafion. The surface morphologies of the bare and modified MNs were studied using field-emission scanning electron microscopy (FESEM) and energy-dispersive X-ray analysis (EDX). The wireless glucose sensor displayed a broad linear range of glucose (1→30 mM), a good sensitivity and higher detection limit of 145.33 μA mM−1 cm−2 and 480 μM, respectively, with bare AuMN as a counter electrode. However, the wireless device showed an improved sensitivity and enhanced detection limit of 445.75, 165.83 μA mM−1 cm−2 and 268 μM, respectively, with the Pt-black-modified MN as a counter electrode. The sensor also exhibited a very good response time (2 s) and a limited interference effect on the detection of glucose in the presence of other electroactive oxidizing species, indicating a very fast and interference-free chronoamperometric response. Full article
(This article belongs to the Special Issue Sensors, Circuit and System for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop