Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = modified gray fast variable structure sliding mode control (MGFVSSMC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4727 KB  
Article
Intelligent Robust Control Design with Closed-Loop Voltage Sensing for UPS Inverters in IoT Devices
by En-Chih Chang, Yuan-Wei Tseng and Chun-An Cheng
Sensors 2025, 25(13), 3849; https://doi.org/10.3390/s25133849 - 20 Jun 2025
Viewed by 627
Abstract
High-performance UPS inverters prevent IoT devices from power outages, thus protecting critical data. This paper suggests an intelligent, robust control technique with closed-loop voltage sensing for UPS (uninterruptible power supply) inverters in IoT (internet of things) devices. The suggested control technique synthesizes a [...] Read more.
High-performance UPS inverters prevent IoT devices from power outages, thus protecting critical data. This paper suggests an intelligent, robust control technique with closed-loop voltage sensing for UPS (uninterruptible power supply) inverters in IoT (internet of things) devices. The suggested control technique synthesizes a modified gray fast variable structure sliding mode control (MGFVSSMC) together with a neural network (NN). The MGFVSSMC allows system states to speedily converge towards the equilibrium within a shorter time while eliminating the problems of chattering and steady-state errors. The MGFVSSMC may experience state prediction errors when the UPS inverter is subjected to external highly nonlinear loads or internal parameters changing drastically. This results in high harmonic distortion and inferior dynamic response of the inverter output, affecting the guarding of the IoT device. An NN by means of a learning mechanism is employed to properly compensate for the prediction error of the MGFVSSMC, achieving a high-performance UPS inverter. The suggested control technique operates with one voltage sensing, which can yield fast transience and low inverter output-voltage distortion. Both simulations and digital signal processing (DSP) implementation results demonstrate the effectiveness of the suggested control technique under a variety of load conditions. Full article
(This article belongs to the Special Issue Mobile Sensing and Computing in Internet of Things)
Show Figures

Figure 1

Back to TopTop