Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = modified Basquin equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9719 KiB  
Article
Prediction of Fatigue Life of Polyetherimide/Carbon Fiber Particulate Composites at Various Maximum Stresses and Filler Contents
by Alexey A. Bogdanov and Sergey V. Panin
Polymers 2024, 16(6), 749; https://doi.org/10.3390/polym16060749 - 8 Mar 2024
Cited by 1 | Viewed by 1363
Abstract
The objective of this research was to predict the fatigue behavior of polyetherimide-based composites loaded with short carbon fibers 200 μm long under cyclic loads. The weight fraction of the filler was 10, 20, and 30 wt.%, while the maximum stress in a [...] Read more.
The objective of this research was to predict the fatigue behavior of polyetherimide-based composites loaded with short carbon fibers 200 μm long under cyclic loads. The weight fraction of the filler was 10, 20, and 30 wt.%, while the maximum stress in a cycle was 55, 65, and 75 MPa. A modified fatigue model based on the obtained experimental results and Basquin equation was developed. The novelty of the results is related to developing a model on the structure–property relationship, which accounts for both the maximum stress in a cycle and the carbon fiber content in the composites. In addition, an “algorithm” for designing such composites according to the fatigue life criterion was proposed. The approach to determine relationships between the composition, structure, and properties of PCMs described in this study can be applied to further expand the model and to improve its versatility in the use of other thermoplastic matrices and fillers. The results of this study can be applied for the design of composites for structural applications with designated fatigue properties. Full article
(This article belongs to the Special Issue Failure of Polymer Composites)
Show Figures

Figure 1

21 pages, 7191 KiB  
Article
Fatigue Life Assessment of API Steel Grade X65 Pipeline Using a Modified Basquin Parameter of the Magnetic Flux Leakage Signal
by Syed Muhamad Firdaus, Azli Arifin, Shahrum Abdullah, Salvinder Singh Karam Singh and Noorsuhada Md Nor
Materials 2023, 16(2), 464; https://doi.org/10.3390/ma16020464 - 4 Jan 2023
Cited by 6 | Viewed by 3129
Abstract
This paper presents a modified fatigue life model of the Basquin equation using the stress parameter of the magnetic flux leakage signal. Most pipeline steels experience cyclic loading during service and the influence of the load history makes assessing fatigue behaviour more difficult. [...] Read more.
This paper presents a modified fatigue life model of the Basquin equation using the stress parameter of the magnetic flux leakage signal. Most pipeline steels experience cyclic loading during service and the influence of the load history makes assessing fatigue behaviour more difficult. The magnetic flux leakage signal’s response to a uniaxial cyclic test of API X65 steel was measured with eight levels of ultimate tensile stress loads. The influence of dH(y)/dx on fatigue failure was the main concern in this study, the aim being to represent localised stress parameters in the modified Basquin equation. Both fatigue lives, experimental and predicted from the modified Basquin equation, were validated through reliability analysis, producing a 60% value when approaching 1.8 × 105 cycles. The fatigue data from the experiment produced a higher mean-cycle-to-failure value than the prediction data, with slightly different values of 3.37 × 105 and 3.28 × 105. Additionally, the modified Basquin equation’s predicted and the experimental fatigue lives were found to have a high R2 correlation value of 0.9022. The Pearson correlation also showed a good relationship between the fatigue lives, with an r value of 0.9801. Finally, the modified Basquin equation based on dH(y)/dx signals provided an accurate and alternative method for durability assessment. Full article
(This article belongs to the Special Issue Fatigue Damage and Fracture Mechanics of Materials)
Show Figures

Figure 1

18 pages, 14107 KiB  
Article
Research on the Properties and Low Cycle Fatigue of Sc-Modified AA2519-T62 FSW Joint
by Robert Kosturek, Lucjan Śnieżek, Janusz Torzewski, Tomasz Ślęzak, Marcin Wachowski and Ireneusz Szachogłuchowicz
Materials 2020, 13(22), 5226; https://doi.org/10.3390/ma13225226 - 19 Nov 2020
Cited by 11 | Viewed by 2163
Abstract
The aim of this research was to examine the mechanical and fatigue properties of friction stir welded Sc-modified 5 mm thick AA2519-T62 extrusion. The joint was obtained using the following parameters: 800 rpm tool rotation speed, 100 mm/min tool traverse speed, 17 kN [...] Read more.
The aim of this research was to examine the mechanical and fatigue properties of friction stir welded Sc-modified 5 mm thick AA2519-T62 extrusion. The joint was obtained using the following parameters: 800 rpm tool rotation speed, 100 mm/min tool traverse speed, 17 kN axial, and MX Triflute as a tool. The investigation has involved microstructure observations, microhardness distribution analysis, tensile test with digital image correlation technique, observations of the fracture surface, measurements of residual stresses, low cycle fatigue testing, and fractography. It was stated that the obtained weld is defect-free and has joint efficiency of 83%. The failure in the tensile test occurred at the boundary of the thermo-mechanically affected zone and stir zone on the advancing side of the weld. The residual stress measurements have revealed that the highest values of longitudinal stress are localized at the distance of 10 mm from the joint line with their values of 124 MPa (the retreating side) and 159 MPa (the advancing side). The results of low cycle fatigue testing have allowed establishing of the values of the cyclic strength coefficient (k′ = 504.37 MPa) and cyclic strain hardening exponent (n′ = 0.0068) as well as the factors of the Manson–Coffin–Basquin equation: the fatigue strength coefficient σ′f = 462.4 MPa, the fatigue strength exponent b = −0.066, the fatigue ductility coefficient ε′f = 0.4212, and the fatigue ductility exponent c = −0.911. Full article
Show Figures

Figure 1

12 pages, 5191 KiB  
Article
Low Cycle Fatigue Properties of Sc-Modified AA2519-T62 Extrusion
by Robert Kosturek, Lucjan Śnieżek, Janusz Torzewski and Marcin Wachowski
Materials 2020, 13(1), 220; https://doi.org/10.3390/ma13010220 - 4 Jan 2020
Cited by 23 | Viewed by 3193
Abstract
This investigation presents the results of research on low cycle fatigue properties of Sc-modified AA2519-T62 extrusion. The basic mechanical properties of the investigated alloy have been established in the tensile test. The low cycle fatigue testing has been performed on five different levels [...] Read more.
This investigation presents the results of research on low cycle fatigue properties of Sc-modified AA2519-T62 extrusion. The basic mechanical properties of the investigated alloy have been established in the tensile test. The low cycle fatigue testing has been performed on five different levels of total strain amplitude: 0.4%; 0.5%; 0.6%; 0.7% and 0.8% with cycle asymmetry coefficient R = 0.1. For each level of total strain amplitude, the graphs of variations in stress amplitude and plastic strain amplitude in the number of cycles have been presented. The obtained results allowed to establish Ramberg-Osgood and Manson-Coffin-Basquin relationships. The established values of the cyclic strength coefficient and cyclic strain hardening exponent equal to k’ = 1518.1 MPa and n’ = 0.1702. Based on the Manscon-Coffin-Basquin equation, the values of the following parameters have been established: the fatigue strength coefficient σ’f = 1489.8 MPa, the fatigue strength exponent b = −0.157, the fatigue ductility coefficient ε’f = 0.4931 and the fatigue ductility exponent c = −1.01. The fatigue surfaces of samples tested on 0.4%, 0.6% and 0.8% of total strain amplitude have been subjected to scanning electron microscopy observations. The scanning electron microscopy observations of the fatigue surfaces revealed the presence of cracks in striations in the surrounding area with a high concentration of precipitates. It has been observed that larger Al2Cu precipitates exhibit a higher tendency to fracture than smaller precipitates having a higher concentration of scandium and zirconium. Full article
Show Figures

Figure 1

Back to TopTop