Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mixed polymer brush nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4467 KB  
Article
Amphiphilic Quantum Dots with Asymmetric, Mixed Polymer Brush Layers: From Single Core-Shell Nanoparticles to Salt-Induced Vesicle Formation
by Brian R. Coleman and Matthew G. Moffitt
Polymers 2018, 10(3), 327; https://doi.org/10.3390/polym10030327 - 16 Mar 2018
Cited by 6 | Viewed by 6743
Abstract
A mixed micelle approach is used to produce amphiphilic brush nanoparticles (ABNPs) with cadmium sulfide quantum dot (QD) cores and surface layers of densely grafted (σ = ~1 chain/nm2) and asymmetric (fPS = 0.9) mixed polymer brushes that contain [...] Read more.
A mixed micelle approach is used to produce amphiphilic brush nanoparticles (ABNPs) with cadmium sulfide quantum dot (QD) cores and surface layers of densely grafted (σ = ~1 chain/nm2) and asymmetric (fPS = 0.9) mixed polymer brushes that contain hydrophobic polystyrene (PS) and hydrophilic poly(methyl methacrylate) (PMAA) chains (PS/PMAA-CdS). In aqueous media, the mixed brushes undergo conformational rearrangements that depend strongly on prior salt addition, giving rise to one of two pathways to fluorescent and morphologically disparate QD-polymer colloids. (A) In the absence of salt, centrosymmetric condensation of PS chains forms individual core-shell QD-polymer colloids. (B) In the presence of salt, non-centrosymmetric condensation of PS chains forms Janus particles, which trigger anisotropic interactions and amphiphilic self-assembly into the QD-polymer vesicles. To our knowledge, this is the first example of an ABNP building block that can form either discrete core-shell colloids or self-assembled superstructures in water depending on simple changes to the chemical conditions (i.e., salt addition). Such dramatic and finely tuned morphological variation could inform numerous applications in sensing, biolabeling, photonics, and nanomedicine. Full article
(This article belongs to the Special Issue Polymeric Materials for Optical Applications)
Show Figures

Graphical abstract

13 pages, 5038 KB  
Article
Surface-Engineered Nanocontainers Based on Molecular Self-Assembly and Their Release of Methenamine
by Minghui Zhang, Jinben Wang, Pei Zhang and Haike Yan
Polymers 2018, 10(2), 163; https://doi.org/10.3390/polym10020163 - 8 Feb 2018
Cited by 3 | Viewed by 4304
Abstract
The mixing of polymers and nanoparticles is opening pathways for engineering flexible composites that exhibit advantageous functional properties. To fabricate controllable assembling nanocomposites for efficiently encapsulating methenamine and releasing them on demand, we functionalized the surface of natural halloysite nanotubes (HNTs) selectively with [...] Read more.
The mixing of polymers and nanoparticles is opening pathways for engineering flexible composites that exhibit advantageous functional properties. To fabricate controllable assembling nanocomposites for efficiently encapsulating methenamine and releasing them on demand, we functionalized the surface of natural halloysite nanotubes (HNTs) selectively with polymerizable gemini surfactant which has peculiar aggregation behavior, aiming at endowing the nanomaterials with self-assembly and stimulative responsiveness characteristics. The micromorphology, grafted components and functional groups were identified using transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The created nanocomposites presented various characteristics of methenamine release with differences in the surface composition. It is particularly worth mentioning that the controlled release was more efficient with the increase of geminized monomer proportion, which is reasonably attributed to the fact that the amphiphilic geminized moieties with positive charge and obvious hydrophobic interactions interact with the outer and inner surface in different ways through fabricating polymeric shell as release stoppers at nanotube ends and forming polymer brush into the nanotube lumen for guest immobilization. Meanwhile, the nanocomposites present temperature and salinity responsive characteristics for the release of methenamine. The combination of HNTs with conjugated functional polymers will open pathways for engineering flexible composites which are promising for application in controlled release fields. Full article
(This article belongs to the Special Issue Stimuli Responsive Polymers)
Show Figures

Graphical abstract

Back to TopTop