Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mildly Cd-polluted paddy fields

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3769 KiB  
Article
Effects of Different Remediation Treatments and Rice Intercropping on the Integrated Quality of Paddy Soils Mildly Contaminated by Cadmium and Copper
by Luxiang Cai, Jinlun Lin, Mingtian Huang, Yong Hong, Xuemeng Zhong, Yourui Guo, Wu You, Qingtie Xiao and Ruiyu Lin
Sustainability 2024, 16(24), 11120; https://doi.org/10.3390/su162411120 - 18 Dec 2024
Cited by 1 | Viewed by 1085
Abstract
The issue of soil contamination by heavy metals (HMs) has attracted extensive attention. In the present study, the effects of four remediation measures combined with rice intercropping on the quality of soils were evaluated in a mildly HM-contaminated paddy field. The results showed [...] Read more.
The issue of soil contamination by heavy metals (HMs) has attracted extensive attention. In the present study, the effects of four remediation measures combined with rice intercropping on the quality of soils were evaluated in a mildly HM-contaminated paddy field. The results showed that better comprehensive remediation effects were found in the intercropping system with high and low Cd-tolerant rice than in the monoculture system. Both foliar spraying of sodium selenite and inoculation with Pseudomonas TCd-1 significantly reduced the Nemerow comprehensive pollution index (NCPI) of the soils. The application of biochar and lime significantly increased the soil fertility index. Among all the treatments, the application of 30 t∙hm−2 biochar and 3600 kg∙hm−2 lime improved soil fertility the most. The lowest single-factor pollution indices (SFPIs) of Cd, Cu, Zn, Ni and Pb and the NCPI of the soils were observed in the treatment with foliar spraying of sodium selenite at 45 mg∙L−1, showing the greatest comprehensive reduction in soil HMs. The application of 1200 kg∙hm−2 lime and 30 t∙hm−2 biochar and foliar spraying of 45 mg∙L−1 sodium selenite effectively improved the soil quality. Overall, the soil quality of paddy fields dramatically influenced the cleaner production of rice and is of great significance to the maintenance of food security. Full article
(This article belongs to the Special Issue Farmland Soil Pollution Control and Ecological Restoration)
Show Figures

Figure 1

14 pages, 723 KiB  
Article
Silicon Calcium Fertilizer Application and Foliar Spraying with Silicon Fertilizer Decreases Cadmium Uptake and Translocation in Rice Grown in Polluted Soil
by Shuai Yuan, Can Cui, Yu Han, Pingping Chen, Naimei Tu and Zhenxie Yi
Agronomy 2023, 13(4), 1170; https://doi.org/10.3390/agronomy13041170 - 20 Apr 2023
Cited by 4 | Viewed by 2324
Abstract
Rice cultivated in Cd-polluted acidic paddy soil poses important health risks in China. Decreasing Cd accumulation in rice is important for food safety and human health. Early rice cultivar ZY-819 and late rice cultivar XWX-13 with low Cd-accumulation potentials, and early rice cultivar [...] Read more.
Rice cultivated in Cd-polluted acidic paddy soil poses important health risks in China. Decreasing Cd accumulation in rice is important for food safety and human health. Early rice cultivar ZY-819 and late rice cultivar XWX-13 with low Cd-accumulation potentials, and early rice cultivar LY-996 and late rice cultivar YZX with high Cd-accumulation potentials, were grown in mildly polluted double-cropping paddy fields (Cd content 0.3–0.6 mg kg−1). The effects of adding biochar (10 t ha−2), lime (1500 kg ha−2), and silicon–calcium fertilizer (SC; 2250 kg ha−2) and foliar spraying with silicon fertilizer solution (Si; 1500 g ha−2) on Cd uptake and transport in rice, were assessed in plot experiments. The soil amendments and foliar spraying decreased the Cd content of brown rice from the high Cd-accumulation potential cultivars. The soil amendments decreased the Cd content of LY-996 and YZX brown rice by 25.24–32.40% and 32.99–44.16%, respectively, and SC decreased the Cd content most. Foliar spraying with Si decreased the Cd content of LY-996 and YZC brown rice by 23.79% and 26.40%, respectively. When soil amendments and foliar spraying were combined, the Cd content of brown rice was decreased most by the SC–Si treatment. Compared with the control, the SC–Si treatment decreased the Cd content of LY-996, ZY-819, YZX, and XWX-13 brown rice by 45.63%, 35.67%, 52.79%, and 32.03%, respectively. Soil amendments can effectively decrease Cd uptake by rice roots and Cd migration from roots to shoots. Compared with the control, the soil amendments increased the soil pH and decreased Cd availability. The strongest effects were for the lime and SC treatments. Foliar spraying with Si can effectively decrease Cd translocation through stems and leaves to brown rice. Applying SC fertilizer and foliar spraying with Si is the best method for decreasing the Cd content of rice grown in mildly Cd-polluted paddy fields. Full article
(This article belongs to the Special Issue In Memory of Professor Longping Yuan, the Father of Hybrid Rice)
Show Figures

Figure 1

Back to TopTop