Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = microsomal glutathione s-transferase 3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2878 KiB  
Article
Alpha-Synuclein Interaction with UBL3 Is Upregulated by Microsomal Glutathione S-Transferase 3, Leading to Increased Extracellular Transport of the Alpha-Synuclein under Oxidative Stress
by Jing Yan, Tomoaki Kahyo, Hengsen Zhang, Yashuang Ping, Chi Zhang, Shuyun Jiang, Qianqing Ji, Rafia Ferdous, Md. Shoriful Islam, Soho Oyama, Shuhei Aramaki, Tomohito Sato, Mst. Afsana Mimi, Md. Mahmudul Hasan and Mitsutoshi Setou
Int. J. Mol. Sci. 2024, 25(13), 7353; https://doi.org/10.3390/ijms25137353 - 4 Jul 2024
Cited by 4 | Viewed by 2011
Abstract
Aberrant aggregation of misfolded alpha-synuclein (α-syn), a major pathological hallmark of related neurodegenerative diseases such as Parkinson’s disease (PD), can translocate between cells. Ubiquitin-like 3 (UBL3) is a membrane-anchored ubiquitin-fold protein and post-translational modifier. UBL3 promotes protein sorting into small extracellular vesicles (sEVs) [...] Read more.
Aberrant aggregation of misfolded alpha-synuclein (α-syn), a major pathological hallmark of related neurodegenerative diseases such as Parkinson’s disease (PD), can translocate between cells. Ubiquitin-like 3 (UBL3) is a membrane-anchored ubiquitin-fold protein and post-translational modifier. UBL3 promotes protein sorting into small extracellular vesicles (sEVs) and thereby mediates intercellular communication. Our recent studies have shown that α-syn interacts with UBL3 and that this interaction is downregulated after silencing microsomal glutathione S-transferase 3 (MGST3). However, how MGST3 regulates the interaction of α-syn and UBL3 remains unclear. In the present study, we further explored this by overexpressing MGST3. In the split Gaussia luciferase complementation assay, we found that the interaction between α-syn and UBL3 was upregulated by MGST3. While Western blot and RT-qPCR analyses showed that silencing or overexpression of MGST3 did not significantly alter the expression of α-syn and UBL3, the immunocytochemical staining analysis indicated that MGST3 increased the co-localization of α-syn and UBL3. We suggested roles for the anti-oxidative stress function of MGST3 and found that the effect of MGST3 overexpression on the interaction between α-syn with UBL3 was significantly rescued under excess oxidative stress and promoted intracellular α-syn to extracellular transport. In conclusion, our results demonstrate that MGST3 upregulates the interaction between α-syn with UBL3 and promotes the interaction to translocate intracellular α-syn to the extracellular. Overall, our findings provide new insights and ideas for promoting the modulation of UBL3 as a therapeutic agent for the treatment of synucleinopathy-associated neurodegenerative diseases. Full article
(This article belongs to the Special Issue Synucleins in Neurodegeneration)
Show Figures

Figure 1

11 pages, 2104 KiB  
Article
UBL3 Interaction with α-Synuclein Is Downregulated by Silencing MGST3
by Jing Yan, Hengsen Zhang, Yuna Tomochika, Bin Chen, Yashuang Ping, Md. Shoriful Islam, Shuhei Aramaki, Tomohito Sato, Yu Nagashima, Tomohiko Nakamura, Tomoaki Kahyo, Daita Kaneda, Kenji Ogawa, Minoru Yoshida and Mitsutoshi Setou
Biomedicines 2023, 11(9), 2491; https://doi.org/10.3390/biomedicines11092491 - 8 Sep 2023
Cited by 5 | Viewed by 2557
Abstract
Ubiquitin-like 3 (UBL3) is a membrane-anchored protein that plays a crucial role in sorting proteins into small extracellular vesicles. Aggregations of alpha-synuclein (α-syn) are associated with the pathology of neurodegenerative diseases such as Parkinson’s disease. Recently, the interaction between UBL3 and α-syn was [...] Read more.
Ubiquitin-like 3 (UBL3) is a membrane-anchored protein that plays a crucial role in sorting proteins into small extracellular vesicles. Aggregations of alpha-synuclein (α-syn) are associated with the pathology of neurodegenerative diseases such as Parkinson’s disease. Recently, the interaction between UBL3 and α-syn was discovered, with potential implications in clearing excess α-syn from neurons and its role in disease spread. However, the regulator that can mediate the interaction between UBL3 and α-syn remains unclear. In this study, using the split gaussian luciferase complementation assay and RNA interference technology, we identified that QSOX2, HTATIP2, UBE3C, MGST3, NSF, HECTD1, SAE1, and ATG3 were involved in downregulating the interaction between UBL3 and α-syn. Notably, silencing MGST3 had the most significant impact. Immunocytochemistry staining confirmed the impact of MGST3 silencing on the co-localization of UBL3 and α-syn in cells. MGST3 is a part of the antioxidant system, and silencing MGST3 is believed to contribute to oxidative stress. We induced oxidative stress with hydrogen peroxide, observing its effect on the UBL3-α-syn interaction, and showing that 800 µM of H2O2 downregulated this interaction. In conclusion, silencing MGST3 downregulates the interaction between UBL3 and α-syn. Full article
Show Figures

Figure 1

16 pages, 2216 KiB  
Article
Identification and Characterization of Glutathione S-transferase Genes in Spodoptera frugiperda (Lepidoptera: Noctuidae) under Insecticides Stress
by Ahmed A. A. Aioub, Ahmed S. Hashem, Ahmed H. El-Sappah, Amged El-Harairy, Amira A. A. Abdel-Hady, Laila A. Al-Shuraym, Samy Sayed, Qiulan Huang and Sarah I. Z. Abdel-Wahab
Toxics 2023, 11(6), 542; https://doi.org/10.3390/toxics11060542 - 19 Jun 2023
Cited by 14 | Viewed by 3770
Abstract
Insect glutathione S-transferases (GSTs) serve critical roles in insecticides and other forms of xenobiotic chemical detoxification. The fall armyworm, Spodoptera frugiperda (J. E. Smith), is a major agricultural pest in several countries, especially Egypt. This is the first study to identify and characterize [...] Read more.
Insect glutathione S-transferases (GSTs) serve critical roles in insecticides and other forms of xenobiotic chemical detoxification. The fall armyworm, Spodoptera frugiperda (J. E. Smith), is a major agricultural pest in several countries, especially Egypt. This is the first study to identify and characterize GST genes in S. frugiperda under insecticidal stress. The present work evaluated the toxicity of emamectin benzoate (EBZ) and chlorantraniliprole (CHP) against the third-instar larvae of S. frugiperda using the leaf disk method. The LC50 values of EBZ and CHP were 0.029 and 1.250 mg/L after 24 h of exposure. Moreover, we identified 31 GST genes, including 28 cytosolic and 3 microsomal SfGSTs from a transcriptome analysis and the genome data of S. frugiperda. Depending on the phylogenetic analysis, sfGSTs were divided into six classes (delta, epsilon, omega, sigma, theta, and microsomal). Furthermore, we investigated the mRNA levels of 28 GST genes using qRT-PCR under EBZ and CHP stress in the third-instar larvae of S. frugiperda. Interestingly, SfGSTe10 and SfGSTe13 stood out with the highest expression after the EBZ and CHP treatments. Finally, a molecular docking model was constructed between EBZ and CHP using the most upregulated genes (SfGSTe10 and SfGSTe13) and the least upregulated genes (SfGSTs1 and SfGSTe2) of S. frugiperda larvae. The molecular docking study showed EBZ and CHP have a high binding affinity with SfGSTe10, with docking energy values of −24.41 and −26.72 kcal/mol, respectively, and sfGSTe13, with docking energy values of −26.85 and −26.78 kcal/mol, respectively. Our findings are important for understanding the role of GSTs in S. frugiperda regarding detoxification processes for EBZ and CHP. Full article
(This article belongs to the Special Issue Detoxification Mechanisms in Insects)
Show Figures

Figure 1

Back to TopTop