Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = micro search coil magnetometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4593 KiB  
Article
A Novel Design Nomogram for Optimization of Micro Search Coil Magnetometer for Energy Monitoring in Smart Buildings
by Hadi Tavakkoli, Kui Song, Xu Zhao, Mingzheng Duan and Yi-Kuen Lee
Micromachines 2022, 13(8), 1342; https://doi.org/10.3390/mi13081342 - 18 Aug 2022
Cited by 6 | Viewed by 2068
Abstract
In this paper, a new analytical method to achieve the maximum signal-to-noise ratio (SNR) of a micro search coil magnetometer (µSCM) is presented. A planar spiral inductor was utilized to miniaturize conventional bulky search coil magnetometers. First, dimensional analysis was applied [...] Read more.
In this paper, a new analytical method to achieve the maximum signal-to-noise ratio (SNR) of a micro search coil magnetometer (µSCM) is presented. A planar spiral inductor was utilized to miniaturize conventional bulky search coil magnetometers. First, dimensional analysis was applied to identify three dimensionless parameters for the µSCM’s key performance indices (sensitivity (Se), noise, and SNR). The effect of the parameters on the µSCM’s performance was carefully investigated, and a novel 4D nomogram was developed. Furthermore, an SNR analysis considering noise sources of a low-noise amplifier was performed. By combining the results from the nomogram and the effect of the noise sources from the amplifier circuit, optimum values for the dimensionless parameters were calculated. According to the calculation results, the dominant noise source varied with an increase in the track width ratio to the outer diameter. Seven different samples were fabricated by a single-mask lithography process. The sensitivity of 1612 mV/mT was demonstrated at a 50 Hz input magnetic field, which was better than the previous µSCM (Se = 6.5 mV/mT) by more than 2 orders of magnitude. Finally, one of the fabricated µSCMs was employed to measure the online power consumption of a personal computer while different types of software were running. Full article
(This article belongs to the Special Issue Design, Fabrication, Testing of MEMS/NEMS)
Show Figures

Graphical abstract

21 pages, 9711 KiB  
Article
A Low-cost Electromagnetic Docking Guidance System for Micro Autonomous Underwater Vehicles
by Shilin Peng, Jingbiao Liu, Junhao Wu, Chong Li, Benkun Liu, Wenyu Cai and Haibin Yu
Sensors 2019, 19(3), 682; https://doi.org/10.3390/s19030682 - 7 Feb 2019
Cited by 13 | Viewed by 6371
Abstract
As important observational platforms for the Smart Ocean concept, autonomous underwater vehicles (AUVs) that perform long-term observation in fleets are beneficial because they provide large-scale sampling data with a sufficient spatiotemporal resolution. Therefore, a large number of low-cost micro AUVs with docking capability [...] Read more.
As important observational platforms for the Smart Ocean concept, autonomous underwater vehicles (AUVs) that perform long-term observation in fleets are beneficial because they provide large-scale sampling data with a sufficient spatiotemporal resolution. Therefore, a large number of low-cost micro AUVs with docking capability for power recharge and data transmission are essential. This study designed a low-cost electromagnetic docking guidance (EMDG) system for micro AUVs. The EMDG system is composed of a transmitter coil located on the dock and a three-axial search coil magnetometer acting as a receiver. The search coil magnetometer was optimized for small sizes while maintaining sufficient sensitivity. The signal conditioning and processing subsystem was designed to calculate the deflection angle (β) for docking guidance. Underwater docking tests showed that the system can detect the electromagnetic signal and successfully guide AUV docking. The AUV can still perform docking in extreme positions, which cannot be realized through normal optical or acoustic guidance. This study is the first to focus on the EM guidance system for low-cost micro AUVs. The search coil sensor in the AUV is inexpensive and compact so that the system can be equipped on a wide range of AUVs. Full article
Show Figures

Figure 1

Back to TopTop