Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = micro and macro measurement bench

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3072 KB  
Data Descriptor
Dataset of Flow-Induced Vibrations on a Pipe Conveying Cold Water
by Francisco Villa, Cherlly Sánchez, Marcela Vallejo, Juan S. Botero-Valencia and Edilson Delgado-Trejos
Data 2021, 6(9), 100; https://doi.org/10.3390/data6090100 - 17 Sep 2021
Cited by 4 | Viewed by 4670
Abstract
Analysis of flow-induced pipe vibrations has been applied in a variety of applications, such as flowrate inference and leak detection. These applications are based on a functional relationship between the vibration features estimated in the pipe walls and the dynamics related to the [...] Read more.
Analysis of flow-induced pipe vibrations has been applied in a variety of applications, such as flowrate inference and leak detection. These applications are based on a functional relationship between the vibration features estimated in the pipe walls and the dynamics related to the flow of the substance. The dataset described in this document is comprised of signals acquired using an accelerometer attached to a pipe conveying cold water at specific flowrate values. Tests were carried out under numerals of the ISO 4064-1/2: 2016 standard and were performed in two measurement benches designed for flowmeter calibration, and a total of 80 flowrate values, from 25 L/h to 20,000 L/h, were considered. For each flowrate value, 3 to 6 samples were taken, so that the resulting dataset has a total of 382 signals that contain acceleration values in three axes and a timestamp in microseconds. Full article
(This article belongs to the Section Information Systems and Data Management)
Show Figures

Figure 1

9 pages, 401 KB  
Article
Spinning Carbon Nanotube Nanothread under a Scanning Electron Microscope
by Weifeng Li, Chaminda Jayasinghe, Vesselin Shanov and Mark Schulz
Materials 2011, 4(9), 1519-1527; https://doi.org/10.3390/ma4091519 - 29 Aug 2011
Cited by 26 | Viewed by 8514
Abstract
Nanothread with a diameter as small as one hundred nanometers was manufactured under a scanning electron microscope. Made directly from carbon nanotubes, and inheriting their superior electrical and mechanical properties, nanothread may be the world’s smallest man-made fiber. The smallest thread that can [...] Read more.
Nanothread with a diameter as small as one hundred nanometers was manufactured under a scanning electron microscope. Made directly from carbon nanotubes, and inheriting their superior electrical and mechanical properties, nanothread may be the world’s smallest man-made fiber. The smallest thread that can be spun using a bench-top spinning machine is about 5 microns in diameter. Nanothread is a new material building block that can be used at the nanoscale or plied to form yarn for applications at the micro and macro scales. Preliminary electrical and mechanical properties of nanothread were measured. The resistivity of nanothread is less than 10−5 Ω∙m. The strength of nanothread is greater than 0.5 GPa. This strength was obtained from measurements using special glue that cures in an electron microscope. The glue weakened the thread, thus further work is needed to obtain more accurate measurements. Nanothread will have broad applications in enabling electrical components, circuits, sensors, and tiny machines. Yarn can be used for various macroscale applications including lightweight antennas, composites, and cables. Full article
(This article belongs to the Special Issue Carbon Nanotubes: Synthesis, Characterization and Applications)
Show Figures

Figure 1

Back to TopTop