Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = median and distal regions of spike

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 9495 KB  
Article
Comparative Analysis of Canopy Cooling in Wheat under High Temperature and Drought Stress
by Vidisha Thakur, Jagadish Rane and Amol N. Nankar
Agronomy 2022, 12(4), 978; https://doi.org/10.3390/agronomy12040978 - 18 Apr 2022
Cited by 18 | Viewed by 4951
Abstract
The size and the weight of wheat grains vary across the length of each spike (Triticum aestivum L.). High temperature and water scarcity often reduce the single grain weight, and this reduction also varies across the spike length. Plants tend to cope [...] Read more.
The size and the weight of wheat grains vary across the length of each spike (Triticum aestivum L.). High temperature and water scarcity often reduce the single grain weight, and this reduction also varies across the spike length. Plants tend to cope with high temperature and drought stress through inherent mechanisms such ascanopy cooling through transpiration, which can contribute to yield stability. The effect of canopy cooling on the average grain weight at different positions in spike is still unknown. In this study, we planned to assess the role of canopy temperature, yield-related traits, and spike shape in final grain weight. For two years (2017–2018 and 2018–2019), fifteen diverse genotypes released for cultivation in different environmental conditions were grown in the field. They were examined for canopy temperature, spikelets spike−1, grain number spike−1, grain yield spike−1, and grain weight of the spike’s basal, median, and distal regions. The Pearson correlation coefficient (r) was obtained for all pair-wise combinations of traits under different treatments and spike shapes. The results indicated that cooler canopy is correlated to grain weight in normal spike shape at all three positions within the spike irrespective of stress. The advantage of the cooler canopy in improving grain-filling at basal, median, and distal regions was more conspicuous in the high temperature stress conditions compared to non-stressed and drought conditions. Full article
Show Figures

Figure 1

Back to TopTop