Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = mass loss ratio (MLR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6787 KiB  
Article
Frost Resistance Prediction of Concrete Based on Dynamic Multi-Stage Optimisation Algorithm
by Xuwei Dong, Jiashuo Yuan and Jinpeng Dai
Algorithms 2025, 18(7), 441; https://doi.org/10.3390/a18070441 - 18 Jul 2025
Viewed by 226
Abstract
Concrete in cold areas is often subjected to a freeze–thaw cycle period, and a harsh environment will seriously damage the structure of concrete and shorten its life. The frost resistance of concrete is primarily evaluated by relative dynamic elastic modulus and mass loss [...] Read more.
Concrete in cold areas is often subjected to a freeze–thaw cycle period, and a harsh environment will seriously damage the structure of concrete and shorten its life. The frost resistance of concrete is primarily evaluated by relative dynamic elastic modulus and mass loss rate. To predict the frost resistance of concrete more accurately, based on the four ensemble learning models of random forest (RF), adaptive boosting (AdaBoost), categorical boosting (CatBoost), and extreme gradient boosting (XGBoost), this paper optimises the ensemble learning models by using a dynamic multi-stage optimisation algorithm (DMSOA). These models are trained using 7090 datasets, which use nine features as input variables; relative dynamic elastic modulus (RDEM) and mass loss rate (MLR) as prediction indices; and six indices of the coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (CC), and standard deviation ratio (SDR) are selected to evaluate the models. The results show that the DMSOA-CatBoost model exhibits the best prediction performance. The R2 of RDEM and MLR are 0.864 and 0.885, respectively, which are 6.40% and 11.15% higher than those of the original CatBoost model. Moreover, the model performs better in error control, with significantly lower MSE, RMSE, and MAE and stronger generalization ability. Additionally, compared with the two mainstream optimisation algorithms (SCA and AOA), DMSOA-CatBoost also has obvious advantages in prediction accuracy and stability. Related work in this paper has a certain significance for improving the durability and quality of concrete, which is conducive to predicting the performance of concrete in cold conditions faster and more accurately to optimise the concrete mix ratio whilst saving on engineering cost. Full article
Show Figures

Figure 1

15 pages, 4839 KiB  
Article
Research on the Corrosion Resistance of Reactive Powder Concrete with Straw Fibers under Chloride Environment
by An Wang, Weixiang Sun, Miao Lu, Xi Peng, Hui Wang and Yao Ji
Coatings 2024, 14(8), 961; https://doi.org/10.3390/coatings14080961 - 1 Aug 2024
Cited by 1 | Viewed by 1755
Abstract
Reactive powder concrete (RPC) is widely used in large-scale bridges, and its durability in coastal areas has become a significant concern. Straw fibers have been evidenced to improve the mechanical properties of concrete, while research on their influence on the chloride corrosion resistance [...] Read more.
Reactive powder concrete (RPC) is widely used in large-scale bridges, and its durability in coastal areas has become a significant concern. Straw fibers have been evidenced to improve the mechanical properties of concrete, while research on their influence on the chloride corrosion resistance of RPC is deficient. Therefore, it is essential to establish the relationships between the quantities and parameters of straw fibers and the properties of the resulting concrete. In this study, the mass loss rates (MLRs), the relative dynamic modulus of elasticity (RDME), the electrical resistance (R), the AC impedance spectrum (ACIS), and the corrosion rates of steel-bar-reinforced RPC mixed with 0%–4% straw fibers by volume of RPC were investigated. A scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to analyze the corrosion of steel bars. The reinforced RPC specimens were exposed to a 3% NaCl dry-wet alternations (D-As) and 3% NaCl freeze-thaw cycles (F-Cs) environment. The results show that, after adding 1%–4% straw fibers, the setting time and slump flow of fresh RPC were reduced by up to 16.92% and 12.89%. The MLRs were −0.44%–0.43% and −0.38%–0.42%, respectively, during the D-As and F-Cs. The relationship between the RDME and the fiber volume ratio was the quadratic function, and it was improved by 9.34%–13.94% and 3.01%–5.26% after 10 D-As and 100 F-Cs, respectively. Incorporating 4% straw fibers reduced the R values of the reinforced RPC specimens by up to 22.90% and decreased the corrosion rates after 10 D-As and 100 F-Cs by 26.08% and 82.29%, respectively. The impedance value was also increased. Moreover, a dense, ultra-fine iron layer and α-FeO(OH) were observed in the rust of rebars by SEM and XRD, as the corrosion resistance of rebars was enhanced. The results indicate that straw fibers improved the corrosion resistance of RPC, which can serve as a protective material to inhibit concrete cracking and thereby prevent rebar oxidation. This study provides theoretical support for the investigation of surface phenomena in reinforced RPC with straw fibers. Full article
Show Figures

Figure 1

20 pages, 7482 KiB  
Article
The Properties of High-Performance Concrete with Manganese Slag under Salt Action
by Junchao Yang, Hui Wang, Ling Peng and Fei Zhao
Materials 2024, 17(7), 1483; https://doi.org/10.3390/ma17071483 - 25 Mar 2024
Cited by 2 | Viewed by 1615
Abstract
Manganese slag (MS) containing a certain amount of active hydration substances may be used as a kind of cementitious material. In the present study, we measured the mass, the relative dynamic modulus of elasticity (RDME), and the flexural and compressive strengths of MS [...] Read more.
Manganese slag (MS) containing a certain amount of active hydration substances may be used as a kind of cementitious material. In the present study, we measured the mass, the relative dynamic modulus of elasticity (RDME), and the flexural and compressive strengths of MS high-performance concrete (MS-HPC) with added basalt fibers exposed to NaCl freeze–thaw cycles (N-FCs), NaCl dry–wet alternations (N-DAs), and Na2SO4 dry–wet alternations (NS-DAs). Scanning electron microscope energy-dispersive spectrometer (SEM-EDS) spectra, thermogravimetric analysis (TG) curves, and X-ray diffraction spectroscopy (XRD) curves were obtained. The mass ratio of MS ranged from 0% to 40%. The volume ratio of basalt fibers varied from 0% to 2%. We found that, as a result of salt action, the mass loss rate (MLR) exhibited linear functions which were inversely correlated with the mass ratio of MS and the volume ratio of basalt fibers. After salt action, MLR increased by rates of 0~56.3%, but this increase was attenuated by the addition of MS and basalt fibers. Corresponding increases in RDME exhibited a linear function which was positively correlated with MS mass ratios in a range of 0~55.1%. The addition of MS and basalt fibers also led to decreased attenuation of mechanical strength, while the addition of MS led to increased levels of flocculent hydration products and the elements Mn, Mg, and Fe. CaClOH and CaSO4 crystals were observed in XRD curves after N-DA and NS-DA actions, respectively. Finally, the addition of MS resulted in increased variation in TG values. However, the opposite result was obtained when dry–wet actions were exerted. Full article
Show Figures

Figure 1

12 pages, 5732 KiB  
Article
The Influence of CO2-Cured Boiler Cinder on the Mechanical Strength of RPC Exposed to NaCl Erosion
by Ligai Bai, Haiyuan Liu and Hui Wang
Coatings 2023, 13(6), 1021; https://doi.org/10.3390/coatings13061021 - 31 May 2023
Cited by 2 | Viewed by 1823
Abstract
Boiler cinder is a kind of mining waste that may cause environmental pollution. Based on this reason, a processing method needs to be carried out. In this study, the influence of CO2-cured boiler cinder on the compressive and flexural strengths of [...] Read more.
Boiler cinder is a kind of mining waste that may cause environmental pollution. Based on this reason, a processing method needs to be carried out. In this study, the influence of CO2-cured boiler cinder on the compressive and flexural strengths of reactive powder cement concrete (RPC) under NaCl actions is investigated. The mass loss rates (MLR) and the relative dynamic modulus of elasticity (RDME) are measured to reflect the resistance of NaCl erosion. The thermogravimetric analysis (TGA), scanning electron microscope (SEM), and X-ray diffraction (XRD) spectrum are obtained for revealing the mechanism of the macro performance. Results show that the relationship between the MLR and the mass ratio of CO2-cured boiler cinder fits the quadratic function with NaCl erosion. Meanwhile, the MLR during NaCl action are decreased by increasing the amount of CO2-cured boiler cinder. The MLR range from 0% to 5.3% during NaCl action, and the decreasing rate of MLR by CO2 curing on boiler cinder is 0%–51.3%. The function of RDME and the mass ratio of CO2-cured boiler cinder accords with the positive correlation quadratic function. The mechanical strengths decrease when NaCl erosion is encountered. The mechanical strengths’ decreasing rates of RPC are elevated with the increasing number of NaCl freeze–thaw cycles and the NaCl dry–wet alternations. The increasing rates of flexural and compressive strengths of RPC by 13.1%–36.3% and 11.2%–50.4% are achieved by adding CO2-cured boiler cinder. As observed from the TGA and SEM’s results, the addition of CO2-cured boiler cinder can increase the thermogravimetric value and the compactness of hydration products. Full article
(This article belongs to the Special Issue Surface Modified Repairing Materials and Mechanics)
Show Figures

Figure 1

24 pages, 10718 KiB  
Article
PLA Renewable Bio Polymer Based Solid-State Gamma Radiation Detector-Dosimeter for Biomedical and Nuclear Industry Applications
by Wen Jiang, David DiPrete and Rusi P. Taleyarkhan
Sensors 2022, 22(21), 8265; https://doi.org/10.3390/s22218265 - 28 Oct 2022
Cited by 1 | Viewed by 2333
Abstract
Polylactic acid (PLA) as a “green,” renewable corn-soy based polymer resin was assessed as a novel solid-state detector for rapid-turnaround gamma radiation dosimetry in the 1–100 kGy range–of significant interest in biomedical and general nuclear industry applications. Co-60 was used as the source [...] Read more.
Polylactic acid (PLA) as a “green,” renewable corn-soy based polymer resin was assessed as a novel solid-state detector for rapid-turnaround gamma radiation dosimetry in the 1–100 kGy range–of significant interest in biomedical and general nuclear industry applications. Co-60 was used as the source of gamma photons. It was found that PLA resin responds well in terms of rheology and porosity metrics with an absorbed gamma dose (Dg). In this work, rheological changes were ascertained via measuring the differential mass loss ratio (MLR) of irradiated PLA placed within PTFE-framed (40 mm × 20 mm × 0.77 mm) cavities bearing ~0.9 g of PLA resin and pressed for 12–16 min in a controlled force hot press under ~6.6 kN loading and platens heated to 227 °C for the low Dg range: 0–11 kGy; and to 193 °C for the extended Dg range: 11–120 kGy. MLR varied quadratically from 0.05 to ~0.2 (1σ ~ 0.007) in the 0–11 kGy experiments, and from 0.05 to ~0.5 (1σ ~0.01) in the 0–120 kGy experiments. Rheological changes from gamma irradiation were modeled and simultaneously correlated with void-pocket formations, which increase with Dg. A single PLA resin bead (~0.04 g) was compressed 5 min at 216 °C in 0–16 kGy experiments, and compressed 2 min at 232 °C in the 16–110 kGy experiments, to form sturdy ~100 µm thick wafers in the same press. Aggregate coupon porosity was then readily measurable with conventional optical microscope imaging and analyzed with standard image processing; this provided complementary data to MLR. Average porosity vs. dose varied quadratically from ~0 to ~15% in the 0–16 kGy range and from ~0 to ~18% over the 16–114 kGy range. These results provide evidence for utilizing “green”/renewable (under $0.01) PLA resin beads for rapid and accurate (+/−5–10%) gamma dosimetry over a wide 0–120 kGy range, using simple to deploy mass and void measuring techniques using common laboratory equipment. Full article
Show Figures

Figure 1

17 pages, 311 KiB  
Article
Associations between Nutritional and Immune Status and Clinicopathologic Factors in Patients with Pancreatic Cancer: A Comprehensive Analysis
by Beata Jabłońska, Krzysztof Pawlicki and Sławomir Mrowiec
Cancers 2021, 13(20), 5041; https://doi.org/10.3390/cancers13205041 - 9 Oct 2021
Cited by 25 | Viewed by 2585
Abstract
The aim of this study was to assess and analyze the nutritional status (NS) and immune status of pancreatic cancer (PC) patients. The retrospective analysis included 80 PC patients undergoing curative pancreatic resection in the Department of Digestive Tract Surgery of the Medical [...] Read more.
The aim of this study was to assess and analyze the nutritional status (NS) and immune status of pancreatic cancer (PC) patients. The retrospective analysis included 80 PC patients undergoing curative pancreatic resection in the Department of Digestive Tract Surgery of the Medical University (Katowice, Poland). Patients were divided by the tumor location (proximal vs. distal), age (≤65 years vs. >65 years), Nutritional Risk Score 2002 (NRS 2002) (<3 vs. ≥3), prognostic nutritional index (PNI) (<45 vs. ≥45), and the presence of postoperative complications (no-complication vs. complication) as well as the use of neoadjuvant chemotherapy (no neoadjuvant chemotherapy vs. neoadjuvant chemotherapy) into two subgroups, which were compared. Significantly higher weight loss was related to the proximal tumor location (p = 0.0104). Significantly lower serum total protein (p = 0.0447), albumin (p = 0.0468), hemoglobin (p = 0.0265) levels, and PNI (p = 0.03) were reported in older patients. The higher nutritional risk according to NRS 2002 was significantly associated with higher age (p = 0.0187), higher weight loss (p < 0.01), lower body mass index (BMI) (p = 0.0293), lower total lymphocyte count (p = 0.0292), longer duration of hospitalization (p = 0.020), neoadjuvant chemotherapy (p < 0.01), and preoperative biliary drainage (p = 0.0492). The lower PNI was significantly associated with higher weight loss (p = 0.0407), lower serum total protein and albumin concentration, lymphocyte count (p < 0.01) and higher neutrophil/lymphocyte (NLR), monocyte/lymphocyte (MLR), platelet/lymphocyte (PLR) ratios, and duration of hospitalization (p < 0.01). In the multiple logistic regression analysis, BMI ≥ 30 kg/m2 (OR: 8.62; 95% CI: 1.24–60.04; p = 0.029521) and NRS 2002 ≥ 3 (OR: 2.87; 95% CI: 0.88–9.33; p = 0.048818) predicted postoperative complications. In the multiple linear regression analysis, the higher NRS 2002 score was linked with the longer duration of hospitalization (b = 7.67948; p = 0.043816), and longer duration of postoperative hospitalization was associated with a higher complication rate (b = 0.273183; p = 0.003100). Nutritional impairment correlates with a systemic inflammatory response in PC patients. Obesity (BMI ≥ 30 kg/m2) and malnutrition (NRS 2002 ≥ 3) predict postoperative complications, which are associate with a longer hospital stay. Assessment of nutritional and immune status using basic diagnostic tools and PNI and immune ratio (NLR, MLR, PLR) calculation should be the standard management of PC patients before surgery to improve the postoperative outcome. Full article
(This article belongs to the Special Issue Prognostic and Predictive Markers in Pancreatic Cancer)
19 pages, 39888 KiB  
Article
Experimental Thermal Hazard Investigation of Pressure and EC/PC/EMC Mass Ratio on Electrolyte
by Changcheng Liu, Kaihui Zheng, Yong Zhou, Kai Zhu and Que Huang
Energies 2021, 14(9), 2511; https://doi.org/10.3390/en14092511 - 27 Apr 2021
Cited by 52 | Viewed by 3530
Abstract
Electrolytes are involved in the thermal runaway (TR) process of cells, which is a potential hazard in lithium-ion batteries (LIBs). Therefore, the effects of different mass ratio of carbonate solvents (ethylene carbonate (EC)/propylene carbonate (PC)/ethyl methyl carbonate (EMC)) with LiBF4 and different [...] Read more.
Electrolytes are involved in the thermal runaway (TR) process of cells, which is a potential hazard in lithium-ion batteries (LIBs). Therefore, the effects of different mass ratio of carbonate solvents (ethylene carbonate (EC)/propylene carbonate (PC)/ethyl methyl carbonate (EMC)) with LiBF4 and different environmental pressure on the combustion characteristics of electrolyte such as flame centerline temperature, mass loss rate (MLR) and heat release rate (HRR) were analyzed. The combustion process could be divided into four stages: ignition, stable combustion stage, stable combustion with flame color change stage and extinguishing; with the decrease of pressure, the MLR of electrolyte declined and the combustion time prolonged, while the temperature of flame centerline increased. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

Back to TopTop