Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = masked authentication messaging (MAM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5389 KiB  
Article
PUFchain 3.0: Hardware-Assisted Distributed Ledger for Robust Authentication in Healthcare Cyber–Physical Systems
by Venkata K. V. V. Bathalapalli, Saraju P. Mohanty, Elias Kougianos, Vasanth Iyer and Bibhudutta Rout
Sensors 2024, 24(3), 938; https://doi.org/10.3390/s24030938 - 31 Jan 2024
Cited by 8 | Viewed by 2446
Abstract
This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber–physical systems (H-CPSs). Healthcare systems around the world [...] Read more.
This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber–physical systems (H-CPSs). Healthcare systems around the world have undergone massive technological transformation and have seen growing adoption with the advancement of Internet-of-Medical Things (IoMT). The technological transformation of healthcare systems to telemedicine, e-health, connected health, and remote health is being made possible with the sophisticated integration of IoMT with machine learning, big data, artificial intelligence (AI), and other technologies. As healthcare systems are becoming more accessible and advanced, security and privacy have become pivotal for the smooth integration and functioning of various systems in H-CPSs. In this work, we present a novel approach that integrates PUF with IOTA Tangle and blockchain and works by storing the PUF keys of a patient’s Body Area Network (BAN) inside blockchain to access, store, and share globally. Each patient has a network of smart wearables and a gateway to obtain the physiological sensor data securely. To facilitate communication among various stakeholders in healthcare systems, IOTA Tangle’s Masked Authentication Messaging (MAM) communication protocol has been used, which securely enables patients to communicate, share, and store data on Tangle. The MAM channel works in the restricted mode in the proposed architecture, which can be accessed using the patient’s gateway PUF key. Furthermore, the successful verification of PUF enables patients to securely send and share physiological sensor data from various wearable and implantable medical devices embedded with PUF. Finally, healthcare system entities like physicians, hospital admin networks, and remote monitoring systems can securely establish communication with patients using MAM and retrieve the patient’s BAN PUF keys from the blockchain securely. Our experimental analysis shows that the proposed approach successfully integrates three security primitives, PUF, blockchain, and Tangle, providing decentralized access control and security in H-CPS with minimal energy requirements, data storage, and response time. Full article
(This article belongs to the Special Issue Internet of Health Things)
Show Figures

Figure 1

23 pages, 5410 KiB  
Article
Data Security and Preservation Mechanisms for Industrial Control Network Using IOTA
by Iuon-Chang Lin, Chin-Chen Chang and Yu-Sung Chang
Symmetry 2022, 14(2), 237; https://doi.org/10.3390/sym14020237 - 26 Jan 2022
Cited by 18 | Viewed by 3834
Abstract
In the Internet of Things (IoT), many devices can communicate with each other directly through the Internet, and there are already good applications in transportation systems, smart meters, and smart home appliances. Wireless sensor networks are used in these Internet of things applications. [...] Read more.
In the Internet of Things (IoT), many devices can communicate with each other directly through the Internet, and there are already good applications in transportation systems, smart meters, and smart home appliances. Wireless sensor networks are used in these Internet of things applications. Playing a vital role, the upload of data requires multiple layers of transmission to reach the cloud. In the industrial control field, many IoT devices upload data to the cloud for storage, but the upload process is easily tampered with, and centralized cloud services also have security concerns. In addition, in the local IoT perception layer among them, the security of sensor identity verification is also very important for message transmission. The main reason why the past blockchain technology could not be widely used in industrial control and other application fields is the cost considerations, because the procedures for running blockchain nodes and uploading transactions are too expensive. Therefore, this paper proposes an IoT architecture based on the IOTA Tangle network to solve the centralization problem of IoT storage in the cloud, and uses the method of MAM (Masked Authenticated Message) to trace the information of WSNs, while achieving data security and data preservation. In the edge devices of WSNs, because of the insufficient memory and computing performance of many devices, it is impossible to perform proof of work calculations. Therefore, this paper uses the logical key hierarchy-based method to manage the sensors, and applies symmetric and asymmetric encryption in blockchain. The identity verification of the device can be effectively achieved, and the operating cost can be effectively reduced. Full article
(This article belongs to the Special Issue Symmetric and Asymmetric Encryption in Blockchain)
Show Figures

Figure 1

19 pages, 11251 KiB  
Article
Securing Environmental IoT Data Using Masked Authentication Messaging Protocol in a DAG-Based Blockchain: IOTA Tangle
by Pranav Gangwani, Alexander Perez-Pons, Tushar Bhardwaj, Himanshu Upadhyay, Santosh Joshi and Leonel Lagos
Future Internet 2021, 13(12), 312; https://doi.org/10.3390/fi13120312 - 6 Dec 2021
Cited by 58 | Viewed by 6104
Abstract
The demand for the digital monitoring of environmental ecosystems is high and growing rapidly as a means of protecting the public and managing the environment. However, before data, algorithms, and models can be mobilized at scale, there are considerable concerns associated with privacy [...] Read more.
The demand for the digital monitoring of environmental ecosystems is high and growing rapidly as a means of protecting the public and managing the environment. However, before data, algorithms, and models can be mobilized at scale, there are considerable concerns associated with privacy and security that can negatively affect the adoption of technology within this domain. In this paper, we propose the advancement of electronic environmental monitoring through the capability provided by the blockchain. The blockchain’s use of a distributed ledger as its underlying infrastructure is an attractive approach to counter these privacy and security issues, although its performance and ability to manage sensor data must be assessed. We focus on a new distributed ledger technology for the IoT, called IOTA, that is based on a directed acyclic graph. IOTA overcomes the current limitations of the blockchain and offers a data communication protocol called masked authenticated messaging for secure data sharing among Internet of Things (IoT) devices. We show how the application layer employing the data communication protocol, MAM, can support the secure transmission, storage, and retrieval of encrypted environmental sensor data by using an immutable distributed ledger such as that shown in IOTA. Finally, we evaluate, compare, and analyze the performance of the MAM protocol against a non-protocol approach. Full article
(This article belongs to the Special Issue Security and Privacy in Blockchains and the IoT)
Show Figures

Graphical abstract

38 pages, 9551 KiB  
Article
Efficient Data Communication Using Distributed Ledger Technology and IOTA-Enabled Internet of Things for a Future Machine-to-Machine Economy
by Mohd Majid Akhtar, Danish Raza Rizvi, Mohd Abdul Ahad, Salil S. Kanhere, Mohammad Amjad and Giuseppe Coviello
Sensors 2021, 21(13), 4354; https://doi.org/10.3390/s21134354 - 25 Jun 2021
Cited by 29 | Viewed by 7333
Abstract
A potential rise in interest in the Internet of Things in the upcoming years is expected in the fields of healthcare, supply chain, logistics, industries, smart cities, smart homes, cyber physical systems, etc. This paper discloses the fusion of the Internet of Things [...] Read more.
A potential rise in interest in the Internet of Things in the upcoming years is expected in the fields of healthcare, supply chain, logistics, industries, smart cities, smart homes, cyber physical systems, etc. This paper discloses the fusion of the Internet of Things (IoT) with the so-called “distributed ledger technology” (DLT). IoT sensors like temperature sensors, motion sensors, GPS or connected devices convey the activity of the environment. Sensor information acquired by such IoT devices are then stored in a blockchain. Data on a blockchain remains immutable however its scalability still remains a challenging issue and thus represents a hindrance for its mass adoption in the IoT. Here a communication system based on IOTA and DLT is discussed with a systematic architecture for IoT devices and a future machine-to-machine (M2M) economy. The data communication between IoT devices is analyzed using multiple use cases such as sending DHT-11 sensor data to the IOTA tangle. The value communication is analyzed using a novel “micro-payment enabled over the top” (MP-OTT) streaming platform that is based on the “pay-as-you-go” and “consumption based” models to showcase IOTA value transactions. In this paper, we propose an enhancement to the classical “masked authenticated message” (MAM) communication protocol and two architectures called dual signature masked authenticated message (DSMAM) and index-based address value transaction (IBAVT). Further, we provided an empirical analysis and discussion of the proposed techniques. The implemented solution provides better address management with secured sharing and communication of IoT data, complete access control over the ownership of data and high scalability in terms of number of transactions that can be handled. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

20 pages, 4587 KiB  
Article
An IOTA-Based Service Discovery Framework for Fog Computing
by Tsung-Yi Tang, Li-Yuan Hou and Tyng-Yeu Liang
Electronics 2021, 10(7), 844; https://doi.org/10.3390/electronics10070844 - 1 Apr 2021
Cited by 3 | Viewed by 3872
Abstract
With the rise in fog computing, users are no longer restricted to only accessing resources located in central and distant clouds and can request services from neighboring fog nodes distributed over networks. This can effectively reduce the network latency of service responses and [...] Read more.
With the rise in fog computing, users are no longer restricted to only accessing resources located in central and distant clouds and can request services from neighboring fog nodes distributed over networks. This can effectively reduce the network latency of service responses and the load of data centers. Furthermore, it can prevent the Internet’s bandwidth from being used up due to massive data flows from end users to clouds. However, fog-computing resources are distributed over multiple levels of networks and are managed by different owners. Consequently, the problem of service discovery becomes quite complicated. For resolving this problem, a decentralized service discovery method is required. Accordingly, this research proposes a service discovery framework based on the distributed ledger technology of IOTA. The proposed framework enables clients to directly search for service nodes through any node in the IOTA Mainnet to achieve the goals of public access and high availability and avoid network attacks to distributed hash tables that are popularly used for service discovery. Moreover, clients can obtain more comprehensive information by visiting known nodes and select a fog node able to provide services with the shortest latency. Our experimental results have shown that the proposed framework is cost-effective for distributed service discovery due to the advantages of IOTA. On the other hand, it can indeed enable clients to obtain higher service quality by automatic node selection. Full article
(This article belongs to the Special Issue Blockchain Technology and Its Applications)
Show Figures

Figure 1

Back to TopTop