Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = magnetite nitrogen-doped carbon quantum dot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4943 KiB  
Article
Magnetite Nitrogen-Doped Carbon Quantum Dots from Empty Fruit Bunches for Tramadol Removal
by Law Yong Ng, Amelia Kar Mun Chiang, Ching Yin Ng, Kai Joe Ng, Ebrahim Mahmoudi, Ying Pei Lim and Muneer M. Ba-Abbad
Processes 2025, 13(2), 298; https://doi.org/10.3390/pr13020298 - 22 Jan 2025
Cited by 1 | Viewed by 1420
Abstract
Tramadol is a widely used pain medication detected in wastewater treatment plants, prompting concerns about its impact on the environment and the effectiveness of wastewater treatment. Nitrogen-doped carbon quantum dots (NCQDs) can be used to remove pollutants from the contaminated water sources. However, [...] Read more.
Tramadol is a widely used pain medication detected in wastewater treatment plants, prompting concerns about its impact on the environment and the effectiveness of wastewater treatment. Nitrogen-doped carbon quantum dots (NCQDs) can be used to remove pollutants from the contaminated water sources. However, NCQDs can hardly be recovered after applications, leading to high regeneration costs. Thus, this study aims to explore the use of magnetite nitrogen-doped carbon quantum dots (magnetite NCQDs) fabricated from empty fruit bunches (EFBs) to remove tramadol from wastewater treatment. Various analytical methods were conducted to characterize the magnetite NCQDs. Magnetite NCQDs showed excellent separation and aggregate-free properties. This study investigated the effect of the initial concentration of tramadol, the dosage of magnetite NCQD adsorbent, and the contact time while keeping other parameters constant. Tramadol was efficiently adsorbed within 40 min with an adsorption efficiency of over 85.9% and further photodegraded by 4.5% after being exposed to UV light after undergoing photocatalysis for 50 min. Magnetite NCQDs exhibited outstanding properties in removing tramadol after undergoing five cycles. This research provides a promising approach for developing a highly efficient adsorbent for treating tramadol-contaminated wastewater. Full article
(This article belongs to the Special Issue Advances in New Methods of Wastewater Treatment and Management)
Show Figures

Graphical abstract

Back to TopTop