Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mRNA GCN periodicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2501 KiB  
Article
Arginine Methylation Regulates Ribosome CAR Function
by Kristen Scopino, Carol Dalgarno, Clara Nachmanoff, Daniel Krizanc, Kelly M. Thayer and Michael P. Weir
Int. J. Mol. Sci. 2021, 22(3), 1335; https://doi.org/10.3390/ijms22031335 - 29 Jan 2021
Cited by 7 | Viewed by 2890
Abstract
The ribosome CAR interaction surface is hypothesized to provide a layer of translation regulation through hydrogen-bonding to the +1 mRNA codon that is next to enter the ribosome A site during translocation. The CAR surface consists of three residues, 16S/18S rRNA C1054, A1196 [...] Read more.
The ribosome CAR interaction surface is hypothesized to provide a layer of translation regulation through hydrogen-bonding to the +1 mRNA codon that is next to enter the ribosome A site during translocation. The CAR surface consists of three residues, 16S/18S rRNA C1054, A1196 (E. coli 16S numbering), and R146 of yeast ribosomal protein Rps3. R146 can be methylated by the Sfm1 methyltransferase which is downregulated in stressed cells. Through molecular dynamics analysis, we show here that methylation of R146 compromises the integrity of CAR by reducing the cation-pi stacking of the R146 guanidinium group with A1196, leading to reduced CAR hydrogen-bonding with the +1 codon. We propose that ribosomes assembled under stressed conditions have unmethylated R146, resulting in elevated CAR/+1 codon interactions, which tunes translation levels in response to the altered cellular context. Full article
(This article belongs to the Special Issue Advanced Research in Ribosomal RNAs)
Show Figures

Figure 1

16 pages, 2719 KiB  
Article
A Ribosome Interaction Surface Sensitive to mRNA GCN Periodicity
by Kristen Scopino, Elliot Williams, Abdelrahman Elsayed, William A. Barr, Daniel Krizanc, Kelly M. Thayer and Michael P. Weir
Biomolecules 2020, 10(6), 849; https://doi.org/10.3390/biom10060849 - 3 Jun 2020
Cited by 4 | Viewed by 3684
Abstract
A longstanding challenge is to understand how ribosomes parse mRNA open reading frames (ORFs). Significantly, GCN codons are over-represented in the initial codons of ORFs of prokaryote and eukaryote mRNAs. We describe a ribosome rRNA-protein surface that interacts with an mRNA GCN codon [...] Read more.
A longstanding challenge is to understand how ribosomes parse mRNA open reading frames (ORFs). Significantly, GCN codons are over-represented in the initial codons of ORFs of prokaryote and eukaryote mRNAs. We describe a ribosome rRNA-protein surface that interacts with an mRNA GCN codon when next in line for the ribosome A-site. The interaction surface is comprised of the edges of two stacked rRNA bases: the Watson–Crick edge of 16S/18S rRNA C1054 and the adjacent Hoogsteen edge of A1196 (Escherichia coli 16S rRNA numbering). Also part of the interaction surface, the planar guanidinium group of a conserved Arginine (R146 of yeast ribosomal protein Rps3) is stacked adjacent to A1196. On its other side, the interaction surface is anchored to the ribosome A-site through base stacking of C1054 with the wobble anticodon base of the A-site tRNA. Using molecular dynamics simulations of a 495-residue subsystem of translocating ribosomes, we observed base pairing of C1054 to nucleotide G at position 1 of the next-in-line codon, consistent with previous cryo-EM observations, and hydrogen bonding of A1196 and R146 to C at position 2. Hydrogen bonding to both of these codon positions is significantly weakened when C at position 2 is changed to G, A or U. These sequence-sensitive mRNA-ribosome interactions at the C1054-A1196-R146 (CAR) surface potentially contribute to the GCN-mediated regulation of protein translation. Full article
Show Figures

Graphical abstract

Back to TopTop