Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = lymphotactin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1313 KiB  
Article
Cardiovascular Risk Biomarkers in Women with and Without Polycystic Ovary Syndrome
by Manjula Nandakumar, Priya Das, Thozhukat Sathyapalan, Alexandra E. Butler and Stephen L. Atkin
Biomolecules 2025, 15(1), 4; https://doi.org/10.3390/biom15010004 - 24 Dec 2024
Viewed by 1497
Abstract
Objective: Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder with an increased risk for cardiovascular disease (CVD) that is enhanced by obesity. This study sought to determine whether a panel of cardiovascular risk proteins (CVRPs) would be dysregulated in overweight/obese PCOS patients, [...] Read more.
Objective: Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder with an increased risk for cardiovascular disease (CVD) that is enhanced by obesity. This study sought to determine whether a panel of cardiovascular risk proteins (CVRPs) would be dysregulated in overweight/obese PCOS patients, highlighting potential biomarkers for CVD in PCOS. Methods: In this exploratory cross-sectional study, plasma levels of 54 CVRPs were analyzed in women with PCOS (n = 147) and controls (n = 97). CVRPs were measured using the SOMAscan proteomic platform (version 3.1), with significant proteins identified through linear models, regression analysis, and receiver operating characteristic (ROC) analysis. Analysis on BMI-matched subsets of the cohort were undertaken. Functional enrichment and protein–protein interaction analyses elucidated the pathways involved. Results: Eleven CVRPs were dysregulated in PCOS (whole set, without matching for body mass index (BMI) or insulin resistance (IR)): leptin, Interleukin-1 receptor antagonist protein (IL-1Ra), polymeric immunoglobulin receptor (PIGR), interleukin-18 receptor (IL-18Ra), C-C motif chemokine 3 (MIP-1a), and angiopoietin-1 (ANGPT1) were upregulated whilst advanced glycosylation end product-specific receptor, soluble (sRAGE), bone morphogenetic protein 6 (BMP6); growth/differentiation factor 2 (GDF2), superoxide dismutase [Mn] mitochondrial (MnSOD), and SLAM family member 5 (SLAF5) were downregulated versus the controls. In BMI-matched (overweight/obese, BMI ≥ 26 kg/m2) subset analysis, six CVRPs were common to the whole set: ANGPT1 and IL-1Ra were upregulated; and sRAGE, BMP6, GDF2, and Mn-SOD were downregulated. In addition, lymphotactin (XCL1) was upregulated and placenta growth factor (PIGF), alpha-L-iduronidase (IDUA), angiopoietin-1 receptor, and soluble (sTie-2) and macrophage metalloelastase (MMP12) were downregulated. A subset analysis of BMI-matched plus insulin resistance (IR)-matched women revealed only upregulation of tissue factor (TF) and renin in PCOS, potentially serving as biomarkers for cardiovascular risk in overweight/obese women with PCOS. Conclusions: A combination of upregulated obesity-related CVRPs (ANGPT1/IL/1Ra/XCL1) and downregulated cardioprotective proteins (sRAGE/BMP6/Mn-SOD/GDF2) in overweight/obese PCOS women may contribute to the increased risk for CVD. TF and renin upregulation observed in the BMI- and IR-matched limited sample PCOS subgroup indicates their potential risk of CVD. Full article
(This article belongs to the Special Issue New Insights into Cardiometabolic Diseases)
Show Figures

Figure 1

25 pages, 1125 KiB  
Review
The Role of Chemokines in Obesity and Exercise-Induced Weight Loss
by Wenbi He, Huan Wang, Gaoyuan Yang, Lin Zhu and Xiaoguang Liu
Biomolecules 2024, 14(9), 1121; https://doi.org/10.3390/biom14091121 - 4 Sep 2024
Cited by 6 | Viewed by 3891
Abstract
Obesity is a global health crisis that is closely interrelated to many chronic diseases, such as cardiovascular disease and diabetes. This review provides an in-depth analysis of specific chemokines involved in the development of obesity, including C-C motif chemokine ligand 2 (CCL2), CCL3, [...] Read more.
Obesity is a global health crisis that is closely interrelated to many chronic diseases, such as cardiovascular disease and diabetes. This review provides an in-depth analysis of specific chemokines involved in the development of obesity, including C-C motif chemokine ligand 2 (CCL2), CCL3, CCL5, CCL7, C-X-C motif chemokine ligand 8 (CXCL8), CXCL9, CXCL10, CXCL14, and XCL1 (lymphotactin). These chemokines exacerbate the symptoms of obesity by either promoting the inflammatory response or by influencing metabolic pathways and recruiting immune cells. Additionally, the research highlights the positive effect of exercise on modulating chemokine expression in the obese state. Notably, it explores the potential effects of both aerobic exercises and combined aerobic and resistance training in lowering levels of inflammatory mediators, reducing insulin resistance, and improving metabolic health. These findings suggest new strategies for obesity intervention through the modulation of chemokine levels by exercise, providing fresh perspectives and directions for the treatment of obesity and future research. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 1641 KiB  
Article
Behavioral Deficits Are Accompanied by Immunological and Neurochemical Changes in a Mouse Model for Neuropsychiatric Lupus (NP-SLE)
by Yan Li, Amanda R. Eskelund, Hua Zhou, David P. Budac, Connie Sánchez and Maria Gulinello
Int. J. Mol. Sci. 2015, 16(7), 15150-15171; https://doi.org/10.3390/ijms160715150 - 3 Jul 2015
Cited by 40 | Viewed by 10242
Abstract
Neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) have been understudied compared to end-organ failure and peripheral pathology. Neuropsychiatric symptoms, particularly affective and cognitive indications, may be among the earliest manifestations of SLE. Among the potential pathophysiological mechanisms responsible for NP-SLE are increased peripheral [...] Read more.
Neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) have been understudied compared to end-organ failure and peripheral pathology. Neuropsychiatric symptoms, particularly affective and cognitive indications, may be among the earliest manifestations of SLE. Among the potential pathophysiological mechanisms responsible for NP-SLE are increased peripheral pro-inflammatory cytokines, subsequent induction of indoleamine-2,3-dioxygenase (IDO) and activation of the kynurenine pathway. In the MRL/MpJ-Faslpr (MRL/lpr) murine model of lupus, depression-like behavior and cognitive dysfunction is evident before significant levels of autoantibody titers and nephritis are present. We examined the behavioral profile of MRL/lpr mice and their congenic controls, a comprehensive plasma cytokine and chemokine profile, and brain levels of serotonin and kynurenine pathway metabolites. Consistent with previous studies, MRL/lpr mice had increased depression-like behavior and visuospatial memory impairment. Plasma levels of different inflammatory molecules (Haptoglobin, interleukin 10 (IL-10), interferon γ-inducible protein 10 (IP-10/CXCL10), lymphotactin, macrophage inhibitory protein 3β (MIP-3β/CCL19), monocyte chemotactic protein 1, 3 and 5 (MCP-1/CCL2, MCP-3/CCL7, MCP-5/CCL12), vascular cell adhesion molecule 1 (VCAM-1), lymphotactin and interferon γ (IFN-γ)) were increased in MRL/lpr mice. In cortex and hippocampus, MRL/lpr mice had increased levels of kynurenine pathway metabolites (kynurenine, 3-hydroxykynurenine, 3-hydroxynthranilic acid and quinolinic acid). Therefore, our study suggests that increased cytokine expression may be critical in the regulation subtle aspects of brain function in NP-SLE via induction of IDO and tryptophan/kynurenine metabolism. Full article
Show Figures

Graphical abstract

24 pages, 876 KiB  
Review
Aldehyde Dehydrogenase 1A1: Friend or Foe to Female Metabolism?
by Jennifer M. Petrosino, David DiSilvestro and Ouliana Ziouzenkova
Nutrients 2014, 6(3), 950-973; https://doi.org/10.3390/nu6030950 - 3 Mar 2014
Cited by 41 | Viewed by 13719
Abstract
In this review, we summarize recent advances in understanding vitamin A-dependent regulation of sex-specific differences in metabolic diseases, inflammation, and certain cancers. We focus on the characterization of the aldehyde dehydrogenase-1 family of enzymes (ALDH1A1, ALDH1A2, ALDH1A3) that catalyze conversion of retinaldehyde to [...] Read more.
In this review, we summarize recent advances in understanding vitamin A-dependent regulation of sex-specific differences in metabolic diseases, inflammation, and certain cancers. We focus on the characterization of the aldehyde dehydrogenase-1 family of enzymes (ALDH1A1, ALDH1A2, ALDH1A3) that catalyze conversion of retinaldehyde to retinoic acid. Additionally, we propose a “horizontal transfer of signaling” from estrogen to retinoids through the action of ALDH1A1. Although estrogen does not directly influence expression of Aldh1a1, it has the ability to suppress Aldh1a2 and Aldh1a3, thereby establishing a female-specific mechanism for retinoic acid generation in target tissues. ALDH1A1 regulates adipogenesis, abdominal fat formation, glucose tolerance, and suppression of thermogenesis in adipocytes; in B cells, ALDH1A1 plays a protective role by inducing oncogene suppressors Rara and Pparg. Considering the conflicting responses of Aldh1a1 in a multitude of physiological processes, only tissue-specific regulation of Aldh1a1 can result in therapeutic effects. We have shown through successful implantation of tissue-specific Aldh1a1−/− preadipocytes that thermogenesis can be induced in wild-type adipose tissues to resolve diet-induced visceral obesity in females. We will briefly discuss the emerging role of ALDH1A1 in multiple myeloma, the regulation of reproduction, and immune responses, and conclude by discussing the role of ALDH1A1 in future therapeutic applications. Full article
(This article belongs to the Special Issue Vitamin A and Carotenoids)
Show Figures

Graphical abstract

Back to TopTop