Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = locator/ID separation protocol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2835 KB  
Article
Textile Defect Detection Using Artificial Intelligence and Computer Vision—A Preliminary Deep Learning Approach
by Rúben Machado, Luis A. M. Barros, Vasco Vieira, Flávio Dias da Silva, Hugo Costa and Vitor Carvalho
Electronics 2025, 14(18), 3692; https://doi.org/10.3390/electronics14183692 - 18 Sep 2025
Viewed by 523
Abstract
Fabric defect detection is essential for quality assurance in textile manufacturing, where manual inspection is inefficient and error-prone. This paper presents a real-time deep learning-based system leveraging YOLOv11 for detecting defects such as holes, color bleeding and creases on solid-colored, patternless cotton and [...] Read more.
Fabric defect detection is essential for quality assurance in textile manufacturing, where manual inspection is inefficient and error-prone. This paper presents a real-time deep learning-based system leveraging YOLOv11 for detecting defects such as holes, color bleeding and creases on solid-colored, patternless cotton and linen fabrics using edge computing. The system runs on an NVIDIA Jetson Orin Nano platform and supports real-time inference, Message Queuing Telemetry (MQTT)-based defect reporting, and optional Real-Time Messaging Protocol (RTMP) video streaming or local recording storage. Each detected defect is logged with class, confidence score, location and unique ID in a Comma Separated Values (CSV) file for further analysis. The proposed solution operates with two RealSense cameras placed approximately 1 m from the fabric under controlled lighting conditions, tested in a real industrial setting. The system achieves a mean Average Precision (mAP@0.5) exceeding 82% across multiple synchronized video sources while maintaining low latency and consistent performance. The architecture is designed to be modular and scalable, supporting plug-and-play deployment in industrial environments. Its flexibility in integrating different camera sources, deep learning models, and output configurations makes it a robust platform for further enhancements, such as adaptive learning mechanisms, real-time alerts, or integration with Manufacturing Execution System/Enterprise Resource Planning (MES/ERP) pipelines. This approach advances automated textile inspection and reduces dependency on manual processes. Full article
(This article belongs to the Special Issue Deep/Machine Learning in Visual Recognition and Anomaly Detection)
Show Figures

Figure 1

28 pages, 5922 KB  
Article
Blockchain-Based Access Control and Behavior Regulation System for IoT
by Haoxiang Song, Zhe Tu and Yajuan Qin
Sensors 2022, 22(21), 8339; https://doi.org/10.3390/s22218339 - 30 Oct 2022
Cited by 11 | Viewed by 4270
Abstract
With the development of 5G and the Internet of things (IoT), the multi-domain access of massive devices brings serious data security and privacy issues. At the same time, most access systems lack the ability to identify network attacks and cannot adopt dynamic and [...] Read more.
With the development of 5G and the Internet of things (IoT), the multi-domain access of massive devices brings serious data security and privacy issues. At the same time, most access systems lack the ability to identify network attacks and cannot adopt dynamic and timely defenses against various security threats. To this end, we propose a blockchain-based access control and behavior regulation system for IoT. Relying on the attribute-based access control model, this system deploys smart contracts on the blockchain to achieve distributed and fine-grained access control and ensures that the identity and authority of access users can be trusted. At the same time, an inter-domain communication mechanism is designed based on the locator/identifier separation protocol and ensures the traffic of access users are authorized. A feedback module that combines traffic detection and credit evaluation is proposed, ensuring real-time detection and fast, proactive responses against malicious behavior. Ultimately, all modules are linked together through workflows to form an integrated security model. Experiments and analysis show that the system can effectively provide comprehensive security protection in IoT scenarios. Full article
(This article belongs to the Special Issue Security and Privacy for IoT Networks and the Mobile Internet)
Show Figures

Figure 1

16 pages, 2924 KB  
Article
A Hierarchical Mapping System for Flat Identifier to Locator Resolution Based on Active Degree
by Jianqiang Liu, Shuai Huo and Yi Wang
Future Internet 2018, 10(8), 75; https://doi.org/10.3390/fi10080075 - 8 Aug 2018
Viewed by 3787
Abstract
Overloading of IP address semantics appeals for a new network architecture based on Identifier (ID)/Locator separation. The challenge of Identifier (ID)/Locator separation is how to solve the scalability and efficiency challenges of identity-to-location resolution. By analyzing the requirements of the Identifier (ID)/Locator separation [...] Read more.
Overloading of IP address semantics appeals for a new network architecture based on Identifier (ID)/Locator separation. The challenge of Identifier (ID)/Locator separation is how to solve the scalability and efficiency challenges of identity-to-location resolution. By analyzing the requirements of the Identifier (ID)/Locator separation protocol, this paper proposes a hierarchical mapping architecture on active-degree (HMAA). This HMAA was divided into three levels: active local level, neutral transfer level, and inert global level. Each mapping item is dynamically allocated to different levels to ensure minimizing delay according to its activity characteristics. The top layer CHORD is constructed by the Markov Decision Process, which can keep consistency between the physical topology and the logical topology. The simulation results on delay time show that HMAA can satisfy the scalability and efficiency requirements of an Identifier (ID)/Locator separation network. Full article
Show Figures

Figure 1

Back to TopTop