Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = lipase tuning by buffers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 851 KiB  
Article
Tuning Almond Lipase Features by Using Different Immobilization Supports
by Oumaima Cherni, Diego Carballares, El Hocine Siar, Pedro Abellanas-Perez, Diandra de Andrades, Javier Rocha-Martin, Sellema Bahri and Roberto Fernandez-Lafuente
Catalysts 2024, 14(2), 115; https://doi.org/10.3390/catal14020115 - 31 Jan 2024
Cited by 7 | Viewed by 1956
Abstract
The lipase from Prunus dulcis almonds has been immobilized for the first time. For this purpose, two different supports, an octadecyl methacrylate particulate support, and aminated agarose (monoaminoethyl-N-aminoethyl) have been utilized. Both immobilized biocatalysts show improved enzyme stability, but great changes in enzyme [...] Read more.
The lipase from Prunus dulcis almonds has been immobilized for the first time. For this purpose, two different supports, an octadecyl methacrylate particulate support, and aminated agarose (monoaminoethyl-N-aminoethyl) have been utilized. Both immobilized biocatalysts show improved enzyme stability, but great changes in enzyme specificity were detected. The enzyme immobilized via ion exchange maintained its activity intact versus p-nitrophenyl butyrate, while the enzyme immobilized on the hydrophobic support fully lost its activity versus this substrate, which was confirmed to be due to substrate adsorption on the support. However, this biocatalyst was much more active versus triacetin (more than 10-fold), R- or S- methyl mandelate at pH 7. At pH 9, a strong effect of using phosphate or bicarbonate as reaction buffers was detected. Using bicarbonate, the interfacially immobilized enzyme presented no activity versus R-isomer, but it was very active versus the S-isomer and triacetin. Using a phosphate buffer during the reaction, all compounds were recognized as substrates. The enzyme immobilized via ion exchange was significantly more active using phosphate; in fact, using bicarbonate, the enzyme was inactive versus both methyl mandelate isomers. This paper shows for the first time a great interaction between the effects of the immobilization protocol and buffer used during reaction on the enantiospecificity of lipases. Full article
(This article belongs to the Special Issue Lipase: A Multi-Purpose Biocatalyst at the Forefront of Biotechnology)
Show Figures

Figure 1

Back to TopTop