Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = linear and circular depolarization ratios

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 25555 KiB  
Article
Water Cloud Detection with Circular Polarization Lidar: A Semianalytic Monte Carlo Simulation Approach
by Wiqas Ahmad, Kai Zhang, Yicheng Tong, Da Xiao, Lingyun Wu and Dong Liu
Sensors 2022, 22(4), 1679; https://doi.org/10.3390/s22041679 - 21 Feb 2022
Cited by 8 | Viewed by 3584
Abstract
This work presents polarization property studies of water clouds using a circular polarization lidar through a simulation approach. The simulation approach is based on a polarized, semianalytic Monte Carlo method under multiple-scattering conditions and considers three types of water clouds (namely homogeneous, inhomogeneous [...] Read more.
This work presents polarization property studies of water clouds using a circular polarization lidar through a simulation approach. The simulation approach is based on a polarized, semianalytic Monte Carlo method under multiple-scattering conditions and considers three types of water clouds (namely homogeneous, inhomogeneous and partially inhomogeneous). The simulation results indicate that the layer-integrated circular depolarization ratios show similar variation trends as those of layer-integrated linear depolarization ratios. The Mishchenko–Hovenier relationship is validated to correlate the simulated layer-integrated circular and linear depolarization ratios. In addition, the cloud droplet effective radius, extinction coefficient, lidar field-of-view (FOV) and height of the cloud bottom are all found to affect the layer-integrated depolarization ratio. The current work theoretically indicates that a circular polarization lidar can efficiently perform measurements of water clouds, enjoying the advantage of higher sensitivity compared to a traditional linear polarization lidar. Hence, it should be of interest to researchers in fields of polarization lidar applications. Full article
(This article belongs to the Special Issue Sensors for Environment Monitoring)
Show Figures

Figure 1

20 pages, 17382 KiB  
Article
Assessment of RISAT-1 and Radarsat-2 for Sea Ice Observations from a Hybrid-Polarity Perspective
by Martine M. Espeseth, Camilla Brekke and A. Malin Johansson
Remote Sens. 2017, 9(11), 1088; https://doi.org/10.3390/rs9111088 - 25 Oct 2017
Cited by 21 | Viewed by 6946
Abstract
Utilizing several Synthetic Aperture Radar (SAR) missions will provide a data set with higher temporal resolution. It is of great importance to understand the difference between various available sensors and polarization modes and to consider how to homogenize the data sets for a [...] Read more.
Utilizing several Synthetic Aperture Radar (SAR) missions will provide a data set with higher temporal resolution. It is of great importance to understand the difference between various available sensors and polarization modes and to consider how to homogenize the data sets for a following combined analysis. In this study, a uniform and consistent analysis across different SAR missions is carried out. Three pairs of overlapping hybrid- and full-polarimetric C-band SAR scenes from the Radar Imaging Satellite-1 (RISAT-1) and Radarsat-2 satellites are used. The overlapping Radarsat-2 and RISAT-1 scenes are taken close in time, with a relatively similar incidence angle covering sea ice in the Fram Strait and Northeast Greenland in September 2015. The main objective of this study is to identify the similarities and dissimilarities between a simulated and a real hybrid-polarity (HP) SAR system. The similarities and dissimilarities between the two sensors are evaluated using 13 HP features. The results indicate a similar separability between the sea ice types identified within the real HP system in RISAT-1 and the simulated HP system from Radarsat-2. The HP features that are sensitive to surface scattering and depolarization due to volume scattering showed great potential for separating various sea ice types. A subset of features (the second parameter in the Stokes vector, the ratio between the HP intensity coefficients, and the α s angle) were affected by the non-circularity property of the transmitted wave in the simulated HP system across all the scene pairs. Overall, the best features, showing high separability between various sea ice types and which are invariant to the non-circularity property of the transmitted wave, are the intensity coefficients from the right-hand circular transmit and the linear horizontal receive channel and the right-hand circular on both the transmit and the receive channel, and the first parameter in the Stokes vector. Full article
(This article belongs to the Special Issue Recent Advances in Polarimetric SAR Interferometry)
Show Figures

Graphical abstract

Back to TopTop