Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = life quality index (LQI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4673 KiB  
Article
Analysis of Life Quality in a Tropical Mountain City Using a Multi-Criteria Geospatial Technique: A Case Study of Kandy City, Sri Lanka
by DMSLB Dissanayake, Takehiro Morimoto, Yuji Murayama, Manjula Ranagalage and ENC Perera
Sustainability 2020, 12(7), 2918; https://doi.org/10.3390/su12072918 - 6 Apr 2020
Cited by 22 | Viewed by 5719
Abstract
The blooming of urban expansion has led to the improvement of urban life, but some of the negative externalities have affected the life quality of urban dwellers, both directly and indirectly. As a result of this, research related to the quality of life [...] Read more.
The blooming of urban expansion has led to the improvement of urban life, but some of the negative externalities have affected the life quality of urban dwellers, both directly and indirectly. As a result of this, research related to the quality of life has gained much attention among multidisciplinary researchers around the world. A number of attempts have been made by previous researchers to identify, assess, quantify, and map quality of life or well-being under various kinds of perspectives. The objectives of this research were to create a life quality index (LQI) and identify the spatial distribution pattern of LQI in Kandy City, Sri Lanka. Multiple factors were decomposed, a hierarchy was constructed by the multi-criteria decision making (MCDM) method, and 13 factors were selected under two main criteria—environmental and socioeconomic. Pairwise comparison matrices were created, and the weight of each factor was determined by the analytic hierarchy process (AHP). Finally, gradient analysis was employed to examine the spatial distribution pattern of LQI from the city center to the periphery. The results show that socioeconomic factors affect the quality of life more strongly than environmental factors, and the most significant factor is transportation. The highest life quality zones (26% of the total area) were distributed around the city center, while the lowest zones represented only 9% of the whole area. As shown in the gradient analysis, more than 50% of the land in the first five kilometers from the city center comes under the highest life quality zone. This research will provide guidance for the residents and respective administrative bodies to make Kandy City a livable city. It the constructed model can be applied to any geographical area by conducting necessary data calibration. Full article
Show Figures

Figure 1

Back to TopTop