Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = label-free dynamic mass redistribution (DMR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 7432 KiB  
Article
Label-Free Investigations on the G Protein Dependent Signaling Pathways of Histamine Receptors
by Ulla Seibel-Ehlert, Nicole Plank, Asuka Inoue, Guenther Bernhardt and Andrea Strasser
Int. J. Mol. Sci. 2021, 22(18), 9739; https://doi.org/10.3390/ijms22189739 - 9 Sep 2021
Cited by 12 | Viewed by 5230
Abstract
G protein activation represents an early key event in the complex GPCR signal transduction process and is usually studied by label-dependent methods targeting specific molecular events. However, the constrained environment of such “invasive” techniques could interfere with biological processes. Although histamine receptors (HRs) [...] Read more.
G protein activation represents an early key event in the complex GPCR signal transduction process and is usually studied by label-dependent methods targeting specific molecular events. However, the constrained environment of such “invasive” techniques could interfere with biological processes. Although histamine receptors (HRs) represent (evolving) drug targets, their signal transduction is not fully understood. To address this issue, we established a non-invasive dynamic mass redistribution (DMR) assay for the human H1–4Rs expressed in HEK cells, showing excellent signal-to-background ratios above 100 for histamine (HIS) and higher than 24 for inverse agonists with pEC50 values consistent with literature. Taking advantage of the integrative nature of the DMR assay, the involvement of endogenous Gαq/11, Gαs, Gα12/13 and Gβγ proteins was explored, pursuing a two-pronged approach, namely that of classical pharmacology (G protein modulators) and that of molecular biology (Gα knock-out HEK cells). We showed that signal transduction of hH1–4Rs occurred mainly, but not exclusively, via their canonical Gα proteins. For example, in addition to Gαi/o, the Gαq/11 protein was proven to contribute to the DMR response of hH3,4Rs. Moreover, the Gα12/13 was identified to be involved in the hH2R mediated signaling pathway. These results are considered as a basis for future investigations on the (patho)physiological role and the pharmacological potential of H1–4Rs. Full article
(This article belongs to the Special Issue Molecular Biology of Histamine Systems)
Show Figures

Figure 1

20 pages, 3316 KiB  
Article
Expression of Melatonin and Dopamine D3 Receptor Heteromers in Eye Ciliary Body Epithelial Cells and Negative Correlation with Ocular Hypertension
by Irene Reyes-Resina, Hanan Awad Alkozi, Anna del Ser-Badia, Juan Sánchez-Naves, Jaume Lillo, Jasmina Jiménez, Jesús Pintor, Gemma Navarro and Rafael Franco
Cells 2020, 9(1), 152; https://doi.org/10.3390/cells9010152 - 8 Jan 2020
Cited by 14 | Viewed by 5329
Abstract
Background: Experiments in the late nineties showed an inverse relationship in the eye levels of melatonin and dopamine, thereby constituting an example of eye parameters that are prone to circadian variations. The underlying mechanisms are not known but these relevant molecules act via [...] Read more.
Background: Experiments in the late nineties showed an inverse relationship in the eye levels of melatonin and dopamine, thereby constituting an example of eye parameters that are prone to circadian variations. The underlying mechanisms are not known but these relevant molecules act via specific cell surface dopamine and melatonin receptors. This study investigated whether these receptors formed heteromers whose function impact on eye physiology. We performed biophysical assays to identify interactions in heterologous systems. Particular heteromer functionality was detected using Gi coupling, MAPK activation, and label-free assays. The expression of the heteroreceptor complexes was assessed using proximity ligation assays in cells producing the aqueous humor and human eye samples. Dopamine D3 receptors (D3Rs) were identified in eye ciliary body epithelial cells. We discovered heteromers formed by D3R and either MT1 (MT1R) or MT2 (MT2R) melatonin receptors. Heteromerization led to the blockade of D3R-Gi coupling and regulation of signaling to the MAPK pathway. Heteromer expression was negatively correlated with intraocular hypertension. Conclusions: Heteromers likely mediate melatonin and dopamine actions in structures regulating intraocular pressure. Significant expression of D3R–MT1R and D3R–MT1R was associated with normotensive conditions, whereas expression diminished in a cell model of hypertension. A clear trend of expression reduction was observed in samples from glaucoma cases. The trend was marked but no statistical analysis was possible as the number of available eyes was 2. Full article
Show Figures

Graphical abstract

Back to TopTop