Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = karst scenery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5349 KiB  
Article
Information Extraction and Prediction of Rocky Desertification Based on Remote Sensing Data
by Jiaju Cao, Xingping Wen, Meimei Zhang, Dayou Luo and Yinlong Tan
Sustainability 2022, 14(20), 13385; https://doi.org/10.3390/su142013385 - 17 Oct 2022
Cited by 10 | Viewed by 1929
Abstract
Rock desertification has become the third most serious ecological problem in western China after desertification and soil erosion. It is also the primary environmental problem to be solved in the karst region of southwest China. Karst landscapes in China are mainly distributed in [...] Read more.
Rock desertification has become the third most serious ecological problem in western China after desertification and soil erosion. It is also the primary environmental problem to be solved in the karst region of southwest China. Karst landscapes in China are mainly distributed in southwest China, and the area centered on the Guizhou plateau is the center of karst landscape development in southern China. It has a fragile ecological environment, and natural factors and human activities have influenced the development of stone desertification in the karst areas to different degrees. In this paper, Dafang County, Guizhou Province, was selected as the study area to analyze the effect of the decision tree and multiple linear regression model on stone desertification and to analyze the evolution characteristics of stone desertification in Dafang County from 2005 to 2020. The FLUS model was applied to predict and validate the stone desertification information. The results show that the overall accuracy of multiple linear regression extraction of stone desertification is 70%, and the Kappa coefficient is 0.69; the overall accuracy of decision tree extraction of stone desertification is 60%, and the Kappa coefficient is 0.521. The multiple linear regression stone desertification extraction model is more accurate than the traditional decision tree classification. The overlay analysis of stone desertification and slope, elevation, slope direction and vegetation cover showed that stone desertification was more distributed between 1300–1900 m in elevation; stone desertification decreased gradually with the increase in slope; each grade of stone desertification was mainly distributed in the range of 5 to 25° in slope, which might be related to human activities. The FLUS model was used to predict the accuracy of 2015 data in the region and project the changes in stone desertification area in 2035 under a conventional scenario and an ecological protection scenario in the region to provide a new reference for predicting stone desertification. Full article
Show Figures

Figure 1

21 pages, 20172 KiB  
Article
Spatial Distribution Pattern and Influencing Factors of Sports Tourism Resources in China
by Yifan Zuo, Huan Chen, Jincheng Pan, Yuqi Si, Rob Law and Mu Zhang
ISPRS Int. J. Geo-Inf. 2021, 10(7), 428; https://doi.org/10.3390/ijgi10070428 - 23 Jun 2021
Cited by 61 | Viewed by 6535
Abstract
Sports tourism is an emerging tourism product. In the sports and tourism industry, resource mining is the foundation that provides positive significance for theoretical support. This study takes China’s sports tourism boutique projects as the study object, exploring its spatial distribution pattern through [...] Read more.
Sports tourism is an emerging tourism product. In the sports and tourism industry, resource mining is the foundation that provides positive significance for theoretical support. This study takes China’s sports tourism boutique projects as the study object, exploring its spatial distribution pattern through the average nearest neighbor index, kernel density, and spatial autocorrelation. On the strength of the wuli–shili–renli system approach, the entropy value method and geographic detector probe model are used to identify the driving factors affecting the spatial distribution pattern. Findings reveal the following: (1) From 2013 to 2014, the sports tourism resources in China present a distribution pattern with the Yangtze River Delta urban agglomeration as the high-density core area and the Guizhou–Guangxi border area and the western Hubei ecological circle as the sub-density core areas. (2) From 2014 to 2018, China’s sports tourism boutique projects increased by 381, and the regional differences among various provinces tended to converge. The high-density core area remained unchanged. The sub-density cores are now the Yunqian border area of the Karst Plateau, the Qinglong border area of the Qilian Mountains, and the Jinji border area of the Taihang Mountains, shaping the distribution trends of “depending on the city, near the scenery” and “large concentration, small dispersion”. (3) The proportion of provincial sports tourism development classified as being in the coordinated stage is 61.29%. (4) The explanatory power of the factors affecting the spatial layout in descending order is natural resource endowment, sports resource endowment, transportation capacity, industrial support and guidance, market cultivation and development, people’s living standards, software and hardware services, and economic benefit effects. The explanatory power of the interaction of two different factors is higher than that of the single factor. Full article
(This article belongs to the Special Issue Geo Data Science for Tourism)
Show Figures

Figure 1

Back to TopTop