Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = jlycyrrhizic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2007 KiB  
Article
The Ability of Acid-Based Natural Deep Eutectic Solvents to Co-Extract Elements from the Roots of Glycyrrhiza glabra L. and Associated Health Risks
by Alexander N. Shikov, Veronika A. Shikova, Anastasiia O. Whaley, Marina A. Burakova, Elena V. Flisyuk, Andrei K. Whaley, Inna I. Terninko, Yulia E. Generalova, Irina V. Gravel and Olga N. Pozharitskaya
Molecules 2022, 27(22), 7690; https://doi.org/10.3390/molecules27227690 - 9 Nov 2022
Cited by 31 | Viewed by 2528
Abstract
The roots of licorice (Glycyrrhiza glabra L.) have been widely used in traditional and officinal medicines for the treatment of different diseases. Natural deep eutectic solvents (NADES) have become popular for the extraction of active principles from medicinal plants. However, the ability [...] Read more.
The roots of licorice (Glycyrrhiza glabra L.) have been widely used in traditional and officinal medicines for the treatment of different diseases. Natural deep eutectic solvents (NADES) have become popular for the extraction of active principles from medicinal plants. However, the ability of NADES to co-extract trace elements during the isolation of target active compounds is rarely investigated. The aim of this study was to analyze the content of trace elements in acid-based NADES extracts from the roots of G. glabra and the health risks associated with them. In this study, we have tested for the first time the ability of several acid-based NADES to co-extract glycyrrhizic acid (GA) and trace elements from the roots of G. glabra. GA has been identified as the dominant phytochemical in G. glabra NADES extracts (0.145–0.495 mg/g). Due to the close pKa of lactic acid and GA, the yield of GA in lactic acid-based NADES was higher in comparison with other tested NADES. The yield of GA in NADES3-NADES5 was statistically significant and surpassed the yield of GA in water. The recovery of all elements (except Li) by all tested NADES was low (less than 6%). According to an ANOVA test, the hydrogen bond donor type plays a decisive role in the extraction of elements. A strong positive correlation between the recovery of GA and MPI was noted. The metal pollution index, hazard quotient, hazard index, and chronic daily intake were calculated and suggest that all tested NADES extracts of G. glabra roots were nontoxic and possess no health risk for both ingestion and topical application. Full article
Show Figures

Figure 1

Back to TopTop