Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = intrafibrillar growth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4495 KiB  
Article
Intrafibrillar Growth of Hydroxyapatite Nanocrystals in Multiscale Collagen
by Bingyu Xue, Yidi Li, Zhengyi Fu, Hang Ping and Kun Wang
Crystals 2023, 13(4), 692; https://doi.org/10.3390/cryst13040692 - 18 Apr 2023
Cited by 3 | Viewed by 2433
Abstract
Collagen fibrils hierarchically assemble from microscale to macroscale, which endows the natural composite bone with good mechanical properties and remodeling functions. Revealing the intrafibrillar growth process of hydroxyapatite nanocrystals of collagen will guide the research of bone repair or collagen-based composites. Herein, we [...] Read more.
Collagen fibrils hierarchically assemble from microscale to macroscale, which endows the natural composite bone with good mechanical properties and remodeling functions. Revealing the intrafibrillar growth process of hydroxyapatite nanocrystals of collagen will guide the research of bone repair or collagen-based composites. Herein, we investigated the mineralization of multiscale collagen matrices and strongly proved the intrafibrillar hydroxyapatite nanocrystals in the collagen fibrils. The hydroxyapatite nanocrystals were deposited within collagen fibrils with co-orientation along the (002) crystal plane, which is the longitude of the fibril. The whole growth process was captured by TEM to demonstrated the five stages of the intrafibrillar growth process of hydroxyapatite nanocrystals. The infiltration and transformation of amorphous calcium phosphate in isolated collagen fibrils are both demonstrated. The intrafibrillar growth process of hydroxyapatite nanocrystals in collagen film was also investigated, showing that the growth area of collagen films increased linearly with time and the growth process. By studying the in situ mineralization under different reaction conditions, the kinetic equation of the mineralized area of collagen film under each condition was obtained, and the optimal hydroxyapatite mineralized solution was proved to be a solution with polyacrylic acid of 50 μG/mL and a pH of 7.5. Our work provides more detailed information of the growth process of HAP nanocrystals during the mineralization of collagen at different scales and would contribute to future research on the formation process of more minerals in collagen. Full article
(This article belongs to the Special Issue Biomaterials for Medical and Dental Applications)
Show Figures

Figure 1

10 pages, 2434 KiB  
Article
Stiffness Variation of 3D Collagen Networks by Surface Functionalization of Network Fibrils with Sulfonated Polymers
by Philipp Riedl, Maria Schricker and Tilo Pompe
Gels 2021, 7(4), 266; https://doi.org/10.3390/gels7040266 - 16 Dec 2021
Cited by 2 | Viewed by 2721
Abstract
Fibrillar collagen is the most prominent protein in the mammalian extracellular matrix. Therefore, it is also widely used for cell culture research and clinical therapy as a biomimetic 3D scaffold. Charged biopolymers, such as sulfated glycosaminoglycans, occur in vivo in close contact with [...] Read more.
Fibrillar collagen is the most prominent protein in the mammalian extracellular matrix. Therefore, it is also widely used for cell culture research and clinical therapy as a biomimetic 3D scaffold. Charged biopolymers, such as sulfated glycosaminoglycans, occur in vivo in close contact with collagen fibrils, affecting many functional properties such as mechanics and binding of growth factors. For in vitro application, the functions of sulfated biopolymer decorations of fibrillar collagen materials are hardly understood. Herein, we report new results on the stiffness dependence of 3D collagen I networks by surface functionalization of the network fibrils with synthetic sulfonated polymers, namely, poly(styrene sulfonate) (PSS) and poly(vinyl sulfonate) (PVS). A non-monotonic stiffness dependence on the amount of adsorbed polymer was found for both polymers. The stiffness dependence correlated to a transition from mono- to multilayer adsorption of sulfonated polymers on the fibrils, which was most prominent for PVS. PVS mono- and multilayers caused a network stiffness change by a factor of 0.3 and 2, respectively. A charge-dependent weakening of intrafibrillar salt bridges by the adsorbed sulfonated polymers leading to fibrillar softening is discussed as the mechanism for the stiffness decrease in the monolayer regime. In contrast, multilayer adsorption can be assumed to induce interfibrillar bridging and an increase in network stiffness. Our in vitro results have a strong implication on in vivo characteristics of fibrillar collagen I, as sulfated glycosaminoglycans frequently attach to collagen fibrils in various tissues, calling for an up to now overlooked impact on matrix and tendon mechanics. Full article
(This article belongs to the Special Issue Gels Horizons: From Science to Smart Materials)
Show Figures

Graphical abstract

Back to TopTop