Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = intracochlear sound pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4853 KiB  
Review
Robotic Systems for Cochlear Implant Surgeries: A Review of Robotic Design and Clinical Outcomes
by Oneeba Ahmed, Mingfeng Wang, Bin Zhang, Richard Irving, Philip Begg and Xinli Du
Electronics 2025, 14(13), 2685; https://doi.org/10.3390/electronics14132685 - 2 Jul 2025
Viewed by 633
Abstract
Sensorineural hearing loss occurs when cochlear hair cells fail to convert mechanical sound waves into electrical signals transmitted via the auditory nerve. Cochlear implants (CIs) restore hearing by directly stimulating the auditory nerve with electrical impulses, often while preserving residual hearing. Over the [...] Read more.
Sensorineural hearing loss occurs when cochlear hair cells fail to convert mechanical sound waves into electrical signals transmitted via the auditory nerve. Cochlear implants (CIs) restore hearing by directly stimulating the auditory nerve with electrical impulses, often while preserving residual hearing. Over the past two decades, robotic-assisted techniques in otologic surgery have gained prominence for improving precision and safety. Robotic systems support critical procedures such as mastoidectomy, cochleostomy drilling, and electrode array (EA) insertion. These technologies aim to minimize trauma and enhance hearing preservation. Despite the outpatient nature of most CI surgeries, surgeons still face challenges, including anatomical complexity, imaging demands, and rising costs. Robotic systems help address these issues by streamlining workflows, reducing variability, and improving electrode placement accuracy. This review evaluates robotic systems developed for cochlear implantation, focusing on their design, surgical integration, and clinical outcomes. This review concludes that robotic systems offer low insertion speed, which leads to reduced insertion forces and lower intracochlear pressure. However, their impact on trauma, long-term hearing preservation, and speech outcome remains uncertain. Further research is needed to assess clinical durability, cost-effectiveness, and patient-reported outcomes. Full article
(This article belongs to the Special Issue Emerging Biomedical Electronics)
Show Figures

Figure 1

12 pages, 2053 KiB  
Article
Intra-Cochlear Current Spread Correlates with Speech Perception in Experienced Adult Cochlear Implant Users
by Charles-Alexandre Joly, Pierre Reynard, Ruben Hermann, Fabien Seldran, Stéphane Gallego, Samar Idriss and Hung Thai-Van
J. Clin. Med. 2021, 10(24), 5819; https://doi.org/10.3390/jcm10245819 - 13 Dec 2021
Cited by 10 | Viewed by 3720
Abstract
Broader intra-cochlear current spread (ICCS) implies higher cochlear implant (CI) channel interactions. This study aimed to investigate the relationship between ICCS and speech intelligibility in experienced CI users. Using voltage matrices collected for impedance measurements, an individual exponential spread coefficient (ESC) was computed. [...] Read more.
Broader intra-cochlear current spread (ICCS) implies higher cochlear implant (CI) channel interactions. This study aimed to investigate the relationship between ICCS and speech intelligibility in experienced CI users. Using voltage matrices collected for impedance measurements, an individual exponential spread coefficient (ESC) was computed. Speech audiometry was performed to determine the intelligibility at 40 dB Sound Pressure Level (SPL) and the 50% speech reception threshold: I40 and SRT50 respectively. Correlations between ESC and either I40 or SRT50 were assessed. A total of 36 adults (mean age: 50 years) with more than 11 months (mean: 34 months) of CI experience were included. In the 21 subjects for whom all electrodes were active, ESC was moderately correlated with both I40 (r = −0.557, p = 0.009) and SRT50 (r = 0.569, p = 0.007). The results indicate that speech perception performance is negatively affected by the ICCS. Estimates of current spread at the closest vicinity of CI electrodes and prior to any activation of auditory neurons are indispensable to better characterize the relationship between CI stimulation and auditory perception in cochlear implantees. Full article
(This article belongs to the Special Issue Cochlear Implantation and Hearing Rehabilitation)
Show Figures

Figure 1

19 pages, 7152 KiB  
Article
Round Window Reinforcement-Induced Changes in Intracochlear Sound Pressure
by Nuwan Liyanage, Lukas Prochazka, Julian Grosse, Adrian Dalbert, Sonia Tabibi, Michail Chatzimichalis, Ivo Dobrev, Tobias Kleinjung, Alexander Huber and Flurin Pfiffner
Appl. Sci. 2021, 11(11), 5062; https://doi.org/10.3390/app11115062 - 30 May 2021
Cited by 8 | Viewed by 3783
Abstract
Introduction: The round window membrane (RWM) acts as a pressure-relieving membrane for incompressible cochlear fluid. The reinforcement of the RWM has been used as a surgical intervention for the treatment of superior semicircular canal dehiscence and hyperacusis. The aim of this study was [...] Read more.
Introduction: The round window membrane (RWM) acts as a pressure-relieving membrane for incompressible cochlear fluid. The reinforcement of the RWM has been used as a surgical intervention for the treatment of superior semicircular canal dehiscence and hyperacusis. The aim of this study was to investigate how RWM reinforcement affects sound pressure variations in the cochlea. Methods: The intracochlear sound pressure (ICSP) was simultaneously measured in the scala tympani (ST) and scala vestibuli (SV) of cadaveric human temporal bones (HTBs) in response to acoustic stimulation for three RWM reinforcement materials (soft tissue, cartilage, and medical-grade silicone). Results: The ICSP in the ST was significantly increased after RWM reinforcement for frequencies below 2 kHz. Between 400 and 600 Hz, all three materials demonstrated the highest median pressure increase. The higher the RWM stiffness, the larger the pressure increase: silicone (7 dB) < soft tissue (10 dB) < cartilage (13 dB). The ICSP in the SV was less affected by reinforcement. The highest median pressure increase was 3 dB. The experimental findings can be explained with numerical models of cochlear mechanics. Discussion and conclusions: RWM reinforcement increases the sound pressure in ST at lower frequencies but only has a minor influence on the SV pressure. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

12 pages, 1798 KiB  
Article
Proof of Concept for an Intracochlear Acoustic Receiver for Use in Acute Large Animal Experiments
by Flurin Pfiffner, Lukas Prochazka, Ivo Dobrev, Karina Klein, Patrizia Sulser, Dominik Péus, Jae Hoon Sim, Adrian Dalbert, Christof Röösli, Dominik Obrist and Alexander Huber
Sensors 2018, 18(10), 3565; https://doi.org/10.3390/s18103565 - 21 Oct 2018
Cited by 6 | Viewed by 4893
Abstract
(1) Background: The measurement of intracochlear sound pressure (ICSP) is relevant to obtain better understanding of the biomechanics of hearing. The goal of this work was a proof of concept of a partially implantable intracochlear acoustic receiver (ICAR) fulfilling all requirements for acute [...] Read more.
(1) Background: The measurement of intracochlear sound pressure (ICSP) is relevant to obtain better understanding of the biomechanics of hearing. The goal of this work was a proof of concept of a partially implantable intracochlear acoustic receiver (ICAR) fulfilling all requirements for acute ICSP measurements in a large animal. The ICAR was designed not only to be used in chronic animal experiments but also as a microphone for totally implantable cochlear implants (TICI). (2) Methods: The ICAR concept was based on a commercial MEMS condenser microphone customized with a protective diaphragm that provided a seal and optimized geometry for accessing the cochlea. The ICAR was validated under laboratory conditions and using in-vivo experiments in sheep. (3) Results: For the first time acute ICSP measurements were successfully performed in a live specimen that is representative of the anatomy and physiology of the human. Data obtained are in agreement with published data from cadavers. The surgeons reported high levels of ease of use and satisfaction with the system design. (4) Conclusions: Our results confirm that the developed ICAR can be used to measure ICSP in acute experiments. The next generation of the ICAR will be used in chronic sheep experiments and in TICI. Full article
(This article belongs to the Special Issue Implantable Sensors 2018)
Show Figures

Figure 1

Back to TopTop