Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = intracellular LOXL2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4860 KB  
Article
New Functions of Intracellular LOXL2: Modulation of RNA-Binding Proteins
by Pilar Eraso, María J. Mazón, Victoria Jiménez, Patricia Pizarro-García, Eva P. Cuevas, Jara Majuelos-Melguizo, Jesús Morillo-Bernal, Amparo Cano and Francisco Portillo
Molecules 2023, 28(11), 4433; https://doi.org/10.3390/molecules28114433 - 30 May 2023
Cited by 5 | Viewed by 2929
Abstract
Lysyl oxidase-like 2 (LOXL2) was initially described as an extracellular enzyme involved in extracellular matrix remodeling. Nevertheless, numerous recent reports have implicated intracellular LOXL2 in a wide variety of processes that impact on gene transcription, development, differentiation, proliferation, migration, cell adhesion, and angiogenesis, [...] Read more.
Lysyl oxidase-like 2 (LOXL2) was initially described as an extracellular enzyme involved in extracellular matrix remodeling. Nevertheless, numerous recent reports have implicated intracellular LOXL2 in a wide variety of processes that impact on gene transcription, development, differentiation, proliferation, migration, cell adhesion, and angiogenesis, suggesting multiple different functions for this protein. In addition, increasing knowledge about LOXL2 points to a role in several types of human cancer. Moreover, LOXL2 is able to induce the epithelial-to-mesenchymal transition (EMT) process—the first step in the metastatic cascade. To uncover the underlying mechanisms of the great variety of functions of intracellular LOXL2, we carried out an analysis of LOXL2’s nuclear interactome. This study reveals the interaction of LOXL2 with numerous RNA-binding proteins (RBPs) involved in several aspects of RNA metabolism. Gene expression profile analysis of cells silenced for LOXL2, combined with in silico identification of RBPs’ targets, points to six RBPs as candidates to be substrates of LOXL2’s action, and that deserve a more mechanistic analysis in the future. The results presented here allow us to hypothesize novel LOXL2 functions that might help to comprehend its multifaceted role in the tumorigenic process. Full article
Show Figures

Graphical abstract

16 pages, 873 KB  
Article
An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein
by Jessica McCready, Daniel S. Wong, Joseph A. Burlison, Weiwen Ying and Daniel G. Jay
Cancers 2014, 6(2), 1031-1046; https://doi.org/10.3390/cancers6021031 - 30 Apr 2014
Cited by 42 | Viewed by 10917
Abstract
Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular [...] Read more.
Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP) and Lysyl oxidase 2-like protein (LOXL2) that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion. Full article
(This article belongs to the Special Issue Heat Shock Proteins in Cancer: Chaperones of Tumorigenesis)
Show Figures

Figure 1

Back to TopTop