Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = intersubbandtransition energies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1298 KiB  
Article
Electro-Optical Modulation of the Nonlinear Optical Response in a GaAs/AlGaAs Symmetric Multiple Quantum Well System
by Carlos Alberto Dagua-Conda, John Alexander Gil-Corrales, Rebeca Victoria Herrero-Hahn, Miguel Eduardo Mora-Ramos, Alvaro Luis Morales and Carlos Alberto Duque
Physics 2025, 7(2), 22; https://doi.org/10.3390/physics7020022 - 12 Jun 2025
Cited by 1 | Viewed by 1081
Abstract
External fields modify the confinement potential and electronic structure in a multiple quantum well system, affecting the light–matter interaction. Here, we present a theoretical study of the modulation of the nonlinear optical response simultaneously employing an intense non-resonant laser field and an electric [...] Read more.
External fields modify the confinement potential and electronic structure in a multiple quantum well system, affecting the light–matter interaction. Here, we present a theoretical study of the modulation of the nonlinear optical response simultaneously employing an intense non-resonant laser field and an electric field. Considering four occupied subbands, we focus on a GaAs/AlGaAs symmetric multiple quantum well system with five wells and six barriers. By solving the Schrödinger equation through the finite element method under the effective mass approximation, we determine the electronic structure and the nonlinear optical response using the density matrix formalism. The laser field dresses the confinement potential while the electric field breaks the inversion symmetry. The combined effect of both fields modifies the intersubband transition energies and the overlap of the wave functions. The results obtained demonstrate an active tunability of the nonlinear optical response, opening up the possibility of designing optoelectronic devices with tunable optical properties. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

Back to TopTop