Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = integral carbon honeycomb monoliths

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 6353 KiB  
Article
High Performance Tunable Catalysts Prepared by Using 3D Printing
by Cristian Yesid Chaparro-Garnica, Esther Bailón-García, Arantxa Davó-Quiñonero, Patrick Da Costa, Dolores Lozano-Castelló and Agustín Bueno-López
Materials 2021, 14(17), 5017; https://doi.org/10.3390/ma14175017 - 2 Sep 2021
Cited by 16 | Viewed by 3462
Abstract
Honeycomb monoliths are the preferred supports in many industrial heterogeneous catalysis reactions, but current extrusion synthesis only allows obtaining parallel channels. Here, we demonstrate that 3D printing opens new design possibilities that outperform conventional catalysts. High performance carbon integral monoliths have been prepared [...] Read more.
Honeycomb monoliths are the preferred supports in many industrial heterogeneous catalysis reactions, but current extrusion synthesis only allows obtaining parallel channels. Here, we demonstrate that 3D printing opens new design possibilities that outperform conventional catalysts. High performance carbon integral monoliths have been prepared with a complex network of interconnected channels and have been tested for carbon dioxide hydrogenation to methane after loading a Ni/CeO2 active phase. CO2 methanation rate is enhanced by 25% at 300 °C because the novel design forces turbulent flow into the channels network. The methodology and monoliths developed can be applied to other heterogeneous catalysis reactions, and open new synthesis options based on 3D printing to manufacture tailored heterogeneous catalysts. Full article
(This article belongs to the Special Issue Synthesis and Application of Carbon Gels)
Show Figures

Graphical abstract

25 pages, 934 KiB  
Review
Carbon-Based Honeycomb Monoliths for Environmental Gas-Phase Applications
by Carlos Moreno-Castilla and Agustín F. Pérez-Cadenas
Materials 2010, 3(2), 1203-1227; https://doi.org/10.3390/ma3021203 - 19 Feb 2010
Cited by 56 | Viewed by 19177
Abstract
Honeycomb monoliths consist of a large number of parallel channels that provide high contact efficiencies between the monolith and gas flow streams. These structures are used as adsorbents or supports for catalysts when large gas volumes are treated, because they offer very low [...] Read more.
Honeycomb monoliths consist of a large number of parallel channels that provide high contact efficiencies between the monolith and gas flow streams. These structures are used as adsorbents or supports for catalysts when large gas volumes are treated, because they offer very low pressure drop, short diffusion lengths and no obstruction by particulate matter. Carbon-based honeycomb monoliths can be integral or carbon-coated ceramic monoliths, and they take advantage of the versatility of the surface area, pore texture and surface chemistry of carbon materials. Here, we review the preparation methods of these monoliths, their characteristics and environmental applications. Full article
(This article belongs to the Special Issue Advances in Materials Science)
Show Figures

Graphical abstract

Back to TopTop