Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = inhomogeneous perpendicular magnetic anisotropy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 16696 KiB  
Article
Advanced Characterization of FeNi-Based Films for the Development of Magnetic Field Sensors with Tailored Functional Parameters
by Sergey V. Komogortsev, Irina G. Vazhenina, Sofya A. Kleshnina, Rauf S. Iskhakov, Vladimir N. Lepalovskij, Anna A. Pasynkova and Andrey V. Svalov
Sensors 2022, 22(9), 3324; https://doi.org/10.3390/s22093324 - 26 Apr 2022
Cited by 22 | Viewed by 3620
Abstract
Magnetometry and ferromagnetic resonance are used to quantitatively study magnetic anisotropy with an easy axis both in the film plane and perpendicular to it. In the study of single-layer and multilayer permalloy films, it is demonstrated that these methods make it possible not [...] Read more.
Magnetometry and ferromagnetic resonance are used to quantitatively study magnetic anisotropy with an easy axis both in the film plane and perpendicular to it. In the study of single-layer and multilayer permalloy films, it is demonstrated that these methods make it possible not only to investigate the average field of perpendicular and in-plane anisotropy, but also to characterize their inhomogeneity. It is shown that the quantitative data from direct integral and local measurements of magnetic anisotropy are consistent with the direct and indirect estimates based on processing of the magnetization curves. The possibility of estimating the perpendicular magnetic anisotropy constant from the width of stripe domains in a film in the transcritical state is demonstrated. The average in-plane magnetic anisotropy field of permalloy films prepared by magnetron sputtering onto a Corning glass is almost unchanged with the thickness of a single-layer film. The inhomogeneity of the perpendicular anisotropy field for a 500 nm film is greater than that for a 100 nm film, and for a multilayer film with a total permalloy thickness of 500 nm, it is greater than that for a homogeneous film of the same thickness. Full article
(This article belongs to the Special Issue Sensors and Biosensors Related to Magnetic Nanoparticles)
Show Figures

Figure 1

14 pages, 4085 KiB  
Article
Manipulation of Skyrmion Motion Dynamics for Logical Device Application Mediated by Inhomogeneous Magnetic Anisotropy
by Jia-Qiang Lin, Ji-Pei Chen, Zhen-Yu Tan, Yuan Chen, Zhi-Feng Chen, Wen-An Li, Xing-Sen Gao and Jun-Ming Liu
Nanomaterials 2022, 12(2), 278; https://doi.org/10.3390/nano12020278 - 16 Jan 2022
Cited by 14 | Viewed by 3537
Abstract
Magnetic skyrmions are promising potential information carriers for future spintronic devices owing to their nanoscale size, non-volatility and high mobility. In this work, we demonstrate the controlled manipulation of skyrmion motion and its implementation in a new concept of racetrack logical device by [...] Read more.
Magnetic skyrmions are promising potential information carriers for future spintronic devices owing to their nanoscale size, non-volatility and high mobility. In this work, we demonstrate the controlled manipulation of skyrmion motion and its implementation in a new concept of racetrack logical device by introducing an inhomogeneous perpendicular magnetic anisotropy (PMA) via micromagnetic simulation. Here, the inhomogeneous PMA can be introduced by a capping nano-island that serves as a tunable potential barriers/well which can effectively modulate the size and shape of isolated skyrmion. Using the inhomogeneous PMA in skyrmion-based racetrack enables the manipulation of skyrmion motion behaviors, for instance, blocking, trapping or allowing passing the injected skyrmion. In addition, the skyrmion trapping operation can be further exploited in developing special designed racetrack devices with logic AND and NOT, wherein a set of logic AND operations can be realized via skyrmion–skyrmion repulsion between two skyrmions. These results indicate an effective method for tailoring the skyrmion structures and motion behaviors by using inhomogeneous PMA, which further provide a new pathway to all-electric skyrmion-based memory and logic devices. Full article
(This article belongs to the Special Issue Nano-Magnets and Nano-Magnetisms)
Show Figures

Figure 1

14 pages, 5235 KiB  
Article
Magnetic and Electronic Properties of Weyl Semimetal Co2MnGa Thin Films
by Peter Swekis, Aleksandr S. Sukhanov, Yi-Cheng Chen, Andrei Gloskovskii, Gerhard H. Fecher, Ioannis Panagiotopoulos, Jörg Sichelschmidt, Victor Ukleev, Anton Devishvili, Alexei Vorobiev, Dmytro S. Inosov, Sebastian T. B. Goennenwein, Claudia Felser and Anastasios Markou
Nanomaterials 2021, 11(1), 251; https://doi.org/10.3390/nano11010251 - 19 Jan 2021
Cited by 29 | Viewed by 7267
Abstract
Magnetic Weyl semimetals are newly discovered quantum materials with the potential for use in spintronic applications. Of particular interest is the cubic Heusler compound Co2MnGa due to its inherent magnetic and topological properties. This work presents the structural, magnetic and electronic [...] Read more.
Magnetic Weyl semimetals are newly discovered quantum materials with the potential for use in spintronic applications. Of particular interest is the cubic Heusler compound Co2MnGa due to its inherent magnetic and topological properties. This work presents the structural, magnetic and electronic properties of magnetron co-sputtered Co2MnGa thin films, with thicknesses ranging from 10 to 80 nm. Polarized neutron reflectometry confirmed a uniform magnetization through the films. Hard x-ray photoelectron spectroscopy revealed a high degree of spin polarization and localized (itinerant) character of the Mn d (Co d) valence electrons and accompanying magnetic moments. Further, broadband and field orientation-dependent ferromagnetic resonance measurements indicated a relation between the thickness-dependent structural and magnetic properties. The increase of the tensile strain-induced tetragonal distortion in the thinner films was reflected in an increase of the cubic anisotropy term and a decrease of the perpendicular uniaxial term. The lattice distortion led to a reduction of the Gilbert damping parameter and the thickness-dependent film quality affected the inhomogeneous linewidth broadening. These experimental findings will enrich the understanding of the electronic and magnetic properties of magnetic Weyl semimetal thin films. Full article
(This article belongs to the Special Issue Synthesis, Development and Characterization of Magnetic Nanomaterials)
Show Figures

Figure 1

Back to TopTop