Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = inhibiting glaze yellowing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5183 KiB  
Article
Preparation and Application of Apatite–TiO2 Composite Opacifier: Preventing Titanium Glaze Yellowing through Pre-Combination
by Xuefeng Bai, Han Zhang, Yu Tu, Sijia Sun, Yangzi Li, Hao Ding, Ming Bai, Liang Chang and Jianmeng Zhang
Materials 2024, 17(5), 1056; https://doi.org/10.3390/ma17051056 - 25 Feb 2024
Cited by 2 | Viewed by 1554
Abstract
In order to enhance the degree of binding reaction of TiO2 in titanium-containing ceramic glazes and prevent the reaction of its transformation into rutile to eliminate the yellowing phenomenon of the glaze surface, an apatite–TiO2 composite opacifier (ATO) was prepared through [...] Read more.
In order to enhance the degree of binding reaction of TiO2 in titanium-containing ceramic glazes and prevent the reaction of its transformation into rutile to eliminate the yellowing phenomenon of the glaze surface, an apatite–TiO2 composite opacifier (ATO) was prepared through the mechanical grinding of hydroxyapatite and anatase TiO2. The properties, opacification mechanism, and yellowing inhibition of the prepared ceramic glazes were studied. The results show that the ATO is characterized by a uniform coating of TiO2 on the surface of the apatite and the formation of close chemical bonding between the apatite and TiO2. The ceramic glaze surface when using an ATO has a white appearance and excellent opacification performance. When an ATO was used, the L*, a*, and b* values of the glaze were 89.99, −0.85, and 3.37, respectively, which were comparable to those of a ZrSiO4 glaze (L*, a*, and b* were 88.24, −0.02, and 2.29, respectively). The opacification of the glaze was slightly lower than that of the TiO2 glaze (L* value was 92.13), but the appearance changed from yellow to the white of the TiO2 glaze (b* value was 9.18). The ceramic glaze layer when using an ATO mainly consists of titanite, glass phase, and a small amount of quartz, and the opacification mechanism is the crystallization of the generated titanite. ATOs can play an active role in solving the critical problem that arises when TiO2 replaces ZrSiO4 as an opacifier. Full article
Show Figures

Figure 1

13 pages, 4122 KiB  
Article
Insight into the Effect of Counterions on the Chromatic Properties of Cr-Doped Rutile TiO2-Based Pigments
by Xiaojian Zhou, Xiaozhen Zhang, Chunhai Zou, Renhua Chen, Lanlan Cheng, Botao Han and Huafeng Liu
Materials 2022, 15(6), 2049; https://doi.org/10.3390/ma15062049 - 10 Mar 2022
Cited by 4 | Viewed by 2771
Abstract
Rutile TiO2 pigments codoped with chromophore ion Cr3+ and various charge-balancing ions (i.e., counterions species of Sb, Nb, W and Mo) were prepared by a solid-phase reaction method. The effects of the counterions and calcination temperatures on the phase structure, color-rendering [...] Read more.
Rutile TiO2 pigments codoped with chromophore ion Cr3+ and various charge-balancing ions (i.e., counterions species of Sb, Nb, W and Mo) were prepared by a solid-phase reaction method. The effects of the counterions and calcination temperatures on the phase structure, color-rendering and spectroscopic properties, microstructure, and stability of the synthesized pigments were investigated in detail. The results showed that the introduction of 5–10% counterions improved the solubility of Cr3+ in the TiO2 lattice to form the single-phase rutile pigments calcined at 1100 °C for 2 h. The 10% Cr-doped pigment showed a dark brown color. Depending on the content and type of counterions, the color of the codoped pigments was tailored from yellow to reddish or yellowish-orange to black with different brightness and hue. The influence mechanism of counterions was ascribed to the lattice distortion and variation in the charge balance condition. It was found that the addition of Sb, Nb, or Mo resulted in a remarkable improvement in the NIR reflectance of pigments. The grain growth was inhibited with the codoping of Cr/Sb and Cr/Nb to achieve the nano-sized pigments. In addition, the prepared pigments exhibited good acid and alkali corrosion resistance as well as excellent stability and coloring performance in transparent ceramic glazes. Full article
Show Figures

Figure 1

Back to TopTop