Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = in situ dry-cleaning (ISD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7814 KiB  
Article
Understanding the Chamber Wall-Deposited Thin Film of Plasma Deposition Equipment for the Efficiency of In Situ Dry-Cleaning
by Jiseok Lee, Jiwon Jang and Sang Jeen Hong
Coatings 2025, 15(5), 563; https://doi.org/10.3390/coatings15050563 - 8 May 2025
Viewed by 1096
Abstract
In plasma-enhanced chemical vapor deposition (PECVD) processes, thin films can accumulate on the inner chamber walls, resulting in particle contamination and process drift. In this study, we investigate the physical and chemical properties of these wall-deposited films to understand their spatial variation and [...] Read more.
In plasma-enhanced chemical vapor deposition (PECVD) processes, thin films can accumulate on the inner chamber walls, resulting in particle contamination and process drift. In this study, we investigate the physical and chemical properties of these wall-deposited films to understand their spatial variation and impact on chamber maintenance. A 6-inch capacitively coupled plasma (CCP)-type PECVD system was used to deposit SiO2 films, whilst long silicon coupons were attached vertically to the chamber side walls to collect contamination samples. The collected contamination samples were comparatively analyzed in terms of their chemical properties and surface morphology. The results reveal significant differences in hydrogen content and Si–O bonding configurations compared to reference films deposited on wafers. The top chamber wall, located near the plasma region, exhibited higher hydrogen incorporation and larger Si–O–Si bonding angles, while the bottom wall exhibited rougher surfaces with larger particulate agglomerates. These variations were closely linked to differences in gas flow dynamics, precursor distribution, and the energy state of the plasma species at different chamber heights. The findings indicate that top-wall contaminants are more readily cleaned due to their high hydrogen content, while bottom-wall residues may be more persistent and pose higher risks for particle generation. This study provides insights into wall contamination behavior in PECVD systems and suggests strategies for spatially optimized chamber cleaning and conditioning in high-throughput semiconductor processes. Full article
Show Figures

Figure 1

Back to TopTop